Publications 

Lou, L., Bacca, N., Ma, M. S., Nautiyal, P., Bifano, T. G., and Agarwal, A., "Multiscale mechanics of polydimethylsiloxane: A comparison of meso- and micro-cyclic deformation behavior," Journal of Applied Polymer Science, [141] (25), p. e55546 (2024). <link>

Ma, M.S.; Sundaram, S.; Lou, L.; Agarwal, A.; Chen, C.S.; Bifano, T.G. High throughput screening system for engineered cardiac tissues. Frontiers in Bioengineering and Biotechnology, [11], 1-11 (2023). <link>

Man, W., Bifano, T.G., "A Design Approach to Reducing Stress and Distortion Caused by Adhesive Assembly in Micromachined Deformable Mirrors," Micromachines, [14], 740, (2023). <link>

Li, H.; Sundaram, S.; Hu, R.; Lou, L.; Sanchez, F.; McDonald, W.; Agarwal, A.; Chen, C.S.; Bifano, T.G. Dynamic Control of Contractile Force in Engineered Heart Tissue. IEEE Transactions on Biomedical Engineering, [70], 2237-2245, (2023). <link>

Wu, K., Zhao, X., Bifano, T. G., Anderson, S. W., and Zhang, X., "Auxetics-inspired tunable metamaterials for magnetic resonance imaging," Advanced Materials, [34]6: 2109032, (2022). <link>

Sinefeld, D., Xia, F., Wang, M., Wang, T., Wu, C., Yang, X., Paudel, H. P., Ouzounov, D. G., Bifano, T. G., and Xu, C., "Three photon adaptive optics for mouse brain imaging," Frontiers in Neuroscience, [16] 880859 (2022). <link>

Haber A & Bifano TG,  "Dual-update data-driven control of deformable mirrors using Walsh basis functions,"  J. Optical Society of America A [39], 459-469, doi:10.1364/JOSAA.447879 (2022). <link>

Rodríguez C, Chen A, Rivera JA, Mohr MA, Liang Y, Natan RG, Sun W, Milkie DE, Bifano TG, Chen X, & Ji N, “An adaptive optics module for deep tissue multiphoton imaging in vivo,” Nature Methods, [18], 1259-1264, (2021). <link>

Haber A, and Bifano TG, “General approach to precise deformable mirror control,” Optics Express, [29] (21), 33741-33759, (2021). <link>

Chen C, Huang Y, Wu K, Bifano TG, Anderson SW, Zhao X,  & Zhang X, “Polarization insensitive, metamaterial absorber-enhanced long-wave infrared detector,” Optics Express, [28](20), 28843-28857, (2020). <link>

Zhao X, Wu K, Chen C, Bifano TG, Anderson SW & Zhang X, “Nonreciprocal magnetic coupling using nonlinear meta-Atoms,” Advanced Science, [7] (19), 2001443, (2020). <link>

Lin P, Ni H, Li H, Vickers NA, Tan Y, Gong R, Bifano TG & Cheng JX “Volumetric chemical imaging in vivo by a remote-focusing stimulated Raman scattering microscope,” Optics Express, [28] (20), 30210-30221, (2020). <link>

Beaulieu DR, Davison IG, Kılıç K, Bifano TG & Mertz J, “Simultaneous multiplane imaging with reverberation two-photon microscopy,” Nature Methods, [17], 283–286, (2020). <link>

Pollock C, Barrett LK, Corro PGd., Stange A, Bifano TG & Bishop DJ, “PWM as a low cost method for the analog control of MEMS devices,” J. Microelectromechanical Systems, [28], 245-253, (2019). <link>

Ba C, Shain WJ, Bifano TG & Mertz J, “High-throughput label-free flow cytometry based on matched-filter compressive imaging,” Biomedical Optics Express, [9], 6145-6153, (2018). <link>

Shain WJ, Vickers NA, Li J, Han X, Bifano TG, & Mertz J, “Axial localization with modulated-illumination extended-depth-of-field microscopy,” Biomedical Optics Express, [9], 1771-1782, (2018). <link>

Shain WJ, Vickers NA, Negash A, Bifano, TG Sentenac A, & Mertz J, “Dual fluorescence-absorption deconvolution applied to extended-depth-of-field microscopy,” Optics Letters, [42], 4183-4186, (2017). <link>

Shain WJ, Vickers NA, Goldberg BB, Bifano TG, & Mertz J, “Extended depth-of-field microscopy with a high-speed deformable mirror” Optics Letters, [42], 995-998, (2017). <link>

Li J, Bifano TG, & Mertz J, “Widefield fluorescence microscopy with sensor-based conjugate adaptive optics using oblique back illumination,” J. Biomedical Optics, [21], 121504-121504, (2016). <link>

Imboden M, Chang J, Pollock C, Lowell E, Akbulut M, Morrison J, Stark T, Bifano TG, & Bishop DJ, “High-speed control of electromechanical transduction advanced drive techniques for optimized step-and-settle response of MEMS micromirrors,IEEE Control Systems, [36], 48-76, (2016). <link>

Sinefeld D, Paudel HP, Ouzounov DG, Bifano TG, & Xu C, “Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence,Optics Express, [23], 31472-31483, (2015). <link>

Li J, Beaulieu DR, Paudel H, Barankov R, Bifano TG, & Mertz J, “Conjugate adaptive optics in widefield microscopy with an extended-source wavefront sensor,” Optica, [2], 682-688, (2015). <link>

Paudel HP, Taranto J, Mertz J, & Bifano TG, “Axial range of conjugate adaptive optics in two-photon microscopy,” Optics Express, [23], 20849-20857, 2015. <link>

Mertz J, Paudel H, & Bifano TG, “Field of view advantage of conjugate adaptive optics in microscopy applications,” Applied Optics, [54], 3498-3506, (2015). <link>

Vigil K, Lu Y, Yurt A, Cilingiroglu TB, Bifano TG, Ünlü MS, & Goldberg BB, “Integrated Circuit Super-Resolution Failure Analysis with Solid Immersion Lenses,” Electronic Device Failure Analysis, [16], 26-32, (2014). <link>

Lu Y, Bifano T, Ünlü MS, & Goldberg BB, “Aberration compensation in aplanatic solid immersion lens microscopy,” Optics Express, [21], 28189-28197, (2013). <link>

Paudel HP, Stockbridge C, Mertz J, & Bifano TG, “Focusing polychromatic light through strongly scattering media,” Optics Express, [21], 17299-17308, (2013). <link>

Stockbridge C, Lu Y, Moore J, Hoffman S, Paxman R, Toussaint K, & Bifano TG, Focusing through dynamic scattering media ,”   Optics Express, [20], 15086-15092, (2012). <link>

Tripathi S, Paxman R, Bifano TG, & Toussaint KC, “Vector transmission matrix for the polarization behavior of light propagation in highly scattering media,” Optics Express, [20], 16067-16076, (2012). <link>

Lu Y, Stockbridge CR, Hoffman SM, & Bifano TG, “Variable zoom system with aberration correction capability,” Journal of Modern Optics, [59] 1-7, (2012). <link>

Goldberg BB, Yurt A, Lu Y, Ramsay E, Koklu FH, Mertz J, Bifano TG, & Ünlü MS, “Chromatic and spherical aberration correction for silicon aplanatic solid immersion lens for fault isolation and photon emission microscopy of integrated circuits,” Microelectronic Reliability, [51], 1637-1639, (2011). <link>

Bifano TG, “Adaptive imaging: MEMS deformable mirrors,Nature Photonics, [5], 21-23, (2011). <link>

Diouf A, Stewart JB, Cornelissen SA, & Bifano TG, “Development of Through-Wafer Interconnects for MEMS Deformable Mirrors,” International Journal of Optomechatronics, [4], 237-245, (2010).   <link>

Vogel C, Tyler G, Lu Y, Bifano TG, Conan R, & Blain C, “Modeling and parameter estimation for point-actuated continuous-facesheet deformable mirrors,” J. Optical Society of America A, [27], A56-A63, (2010). <link>

Diouf A, Legendre AP, Stewart JB, Bifano TG, & Lu Y, “Open-loop shape control for continuous microelectromechanical system deformable mirror,” Applied Optics, [49], G148-G154, (2010). <link>

Cornelissen SA, Bierden PA, Bifano TG, & Lam CV, “4096-element continuous face-sheet MEMS deformable mirror for high-contrast imaging,” J. Micro/Nanolithorgraphy, MEMS, and MOEMS [8], 031308-031308, (2009). <link>

Diouf A, Reimann G, & Bifano, TG, ”Fabrication of implantable microshunt using a novel channel sealing technique,”  J. Micro/Nanolithorgraphy, MEMS, and MOEMS [7], 030501-1:3, (2008). <link>

Stewart JB, Diouf A, Zhou Y & Bifano TG, “Open-loop control of a MEMS deformable mirror for large-amplitude wavefront control,” J. Optical Society of America, A [24], 3827-3833, (2007). <link>

Stewart JB, Bifano TG, Cornelissen, SA, Bierden, PA, Levine, BM, & Cook, T, “Design and development of a 331-segment tip-tilt-piston mirror array for space-based adaptive optics,” Sensors and Actuators A- Physical [138] ,  230-238, (2007). <link>

Biss DP, Sumorok D, Burns SA, Webb RH, Zhou Y, Bifano TG, Côté D, Veilleux I, Zamiri P, & Lin CP, “In vivo fluorescent imaging of the mouse retina using adaptive optics,” Optics Letters [32], 659-661, (2007). <link>

Chen F, Cohen HI, Bifano TG, Castle J, Fortin J, Kapusta, C, Mountain DC, Zosuls A, & Hubbard AE, “A hydromechanical biomimetic cochlea: Experiments and models,” J. Acoustical Society of America [119], 394-405, (2006). <link>

Miller MH, Perrault JA, Parker GG, Bettig BP, & Bifano TG, “Simple models for piston-type micromirror behavior,” J. Micromechanics and Microengineering [16] , 303–313, (2006). <link>

Santiago LP & Bifano TG, “Management of R&D projects under uncertainty: multidimensional approach to managerial flexibility,” IEEE Transactions on Engineering Management, [52](2):269-80, (2004). <link>

Collier J, Wroblewski D, & Bifano TG, “Development of a rapid-response flow-control system using MEMS microvalve arrays,” J. Microelectromechanical Systems, [13](6), 912-922, (2004). <link>

Webb R, Albanese M, Zhou Y, Bifano TG, & Burns S, “A stroke amplifier for deformable mirrors,” Applied Optics, [43]12, 5330-5333, (2004). <link>

Lee H, Miller MH, & Bifano TG, “CMOS chip planarization by chemical mechanical polishing for a vertically stacked metal MEMS integration,J. Micromechanics and Microengineering, [14] (1), 108-115, (2004). <link>

Bifano TG, Johnson HT, Bierden PA & Mali RK, “Elimination of Stress-Induced Curvature in Thin-Film Structures,” J. Microelectromechanical Systems, [11], 592-597, (2002). <link>

Perreault JA, Bifano TG, Levine BM, & Horentein M, “Adaptive optic correction using microelectromechanical deformable mirrors,” Optical Engineering [41](3), 561-566, (2002). <link>

Horenstein M, Pappas S, Fishov A, & Bifano TG, “Electrostatic Micromirrors for Subaperturing in an Adaptive Optics System,” Journal of Electrostatics, [54], 321-332, (2002). <link>

Weyrauch T, Vorontsov MA, Bifano TG, Hammer JA, Cohen M, & Cauwenberghs G, “Microscale adaptive optics: wavefront control with a µ-mirror array and a VLSI stochastic gradient descent controller,” Applied Optics, [40] (24), 4243-4253, (2001). <link>

Shanbhag PM, Feinberg MR, Sandri G, Horenstein MN, & Bifano, TG, “Ion-Beam Machining of Millimeter Scale Optics,” Applied Optics, [39] (4), 59 –611, (2000). <link>

Horenstein MN, Perreault J, & Bifano, TG, “Differential Capacitive Position Sensor for Planar MEMS Structures with Vertical Motion,” Sensors and Actuators [80], 53-61, (2000). <link>

Mali RK, Bifano TG, & Koester DA, “Design-based approach to planarization in multilayer surface micromachining,” J. Micromechanics and Microengineering, [9] , 294–299, (1999). <link>

Horenstein M, Bifano TG, Pappas S, Perreault J, & Krishnamoorthy-Mali R, “Real Time Optical Correction Using Electrostatically Actuated MEMS Devices,” J. Electrostatics , [46], 91-101, (1999). <link>

Bifano TG, Perreault J, Mali RK, & Horenstein MN, “Microelectromechanical Deformable Mirrors,” J. Selected Topics in Quantum Electronics, [5], 83-90, (1999). <link>

Bifano TG., Krishnamoorthy R, Caggiano H, & Welch E, “Fixed-Load Electrolytic Dressing with Bronze-Bonded Grinding Wheels,” ASME J. Manufacturing, [121], 20-27, (1999). <link>

Vandelli N, Wroblewski DE, Velonis M, & Bifano TG, “Development of a MEMS Microvalve Array for Fluid Flow Control,J. Micrelectromechanical Systems, [7], 395-403, (1998). <link>

Bifano TG, Mali R, Perreault J, Dorton K, Vandelli N, Horentein M, & Castanon D, “Continuous membrane, surface micromachined silicon deformable mirror,” Optical Engineering [36](5), 1354-1360, (1997). <link>

Bifano TG, Caggiano H, & Bierden PA, “Precision Manufacture of Optical Disc Master Stampers,” J. Precision Engengineering, [20] 53-62, (1997). <link>

Bifano TG, & Bierden PA, “Fixed Abrasive Grinding of Brittle Hard Disk Substrates,” International Journal of Machine Tools and Manufacture [37](7), 935-946, (1997). <link>

Horenstein MN, Bifano TG, Mali RK, & Vandelli N, “Electrostatic Effects in Micromachined Actuators for Adaptive Optics,” Journal of Electrostatics [42], 69-82, (1997). <link>

Krishnamoorthy R, Bifano TG, Vandelli N, & Horenstein M, “Development of MEMS deformable mirrors for phase modulation of light,” Optical Engineering [36] (2), 542-548, (1997). <link>

Scagnetti PA, Bifano TG, Nagem RJ, & Sandri GvH, “Stress and Strain Analysis in Molecular Dynamics Simulation of Solids,” ASME J. of Applied Mechanics, [63], 450-453, (1996). <link>

Bifano TG & Bierden PA, “Fixed-abrasive grinding of brittle hard-disk substrates,” International Journal of Machine Tools and Manufacture, [37], 935-946, (1997). <link>

Drueding T, Bifano TG, & Fawcett SC, “Contouring Algorithm for Ion Figuring,” J. Precision Engineering [17] , 10-21, (1995). <link>

Drueding TW, Wilson S, Fawcett SC, & Bifano TG, “Ion beam figuring of small optical components,” Optical Engineering, [34] (12), 3565-3571, (1995). <link>

Bifano TG, Kahl WK, & Yi Y, “Fixed-Abrasive Grinding CVD Silicon Carbide Mirrors,” J. Precision Engineering, [16](2), 109-116, (1994). <link>

Fawcett SC, Bifano TG, & Drueding T, “Neutral Ion Figuring of Chemically vapor Deposited Silicon Carbide,” Optical Engineering, [33](3), 967-974, (1994). <link>

Bifano TG, Golini D, & DePiero D, “Chemomechanical Effects in Ductile-Regime Machining of Glass,” J. Precision Engineering, [15](4), 238-247, (1993). <link>

Bifano TG, & Hosler J, “Precision Grinding of Ultra-Thin Quartz Wafers,” ASME J. Engineering for Industry, [115](3), 258-262, (1993). <link>

Bifano TG, & Yi Y, “Acoustic Emission as an Indicator of Material-Removal Regime in Glass Microgrinding,” J. Precision Engineering,  [14] (4), 219-228, (1992). <link>

Scattergood RP, Srinivasan S, Bifano TG, & Dow TA, “R-Curve Effects for Machining and Wear of Ceramics,” Ceramica Acta [3](4-5), 53-64, (1991). <link>

Bifano TG, & Fawcett, SC, “Specific Grinding Energy as an In-Process Control Variable for Ductile-Regime Grinding,” J. Precision Engineering, [13](4), 256-262, (1991). <link>

Bifano TG, Dow TA, & Scattergood, RO, “Ductile-Regime Grinding: A New Technology for Machining Brittle Materials,ASME J. Engineering for Industry, [113](2), 184-189, (1991). <link>

Blake P, Bifano TG, Dow TA, & Scattergood RO, “Precision Machining of Ceramic Materials,American Ceramic Society Bulletin [67](6), 1038-1044, (1988). <link>

Bifano TG, & Dow TA, “Real Time Control of Spindle Runout,” Optical Engineering [24](5), 888-892, (1985). <link>


Patents and Awards

2022 U.S. Patent (#11,226,474) Reverberation microscopy systems and methods

2020 U.S. Patent (#10,678,037) Reverberation microscopy systems and methods

2019 U.S. Patent (#10,175,476) Solid immersion microscopy system with deformable mirror 

2018 U.S.Patent (#10,018,817) Adaptive optics for imaging through highly scattering media

2011 U.S. Patent (#7,929,195) MEMS Based Retroreflector

2010 R&D 100 Award: (MEMS)-based Adaptive-Optics Optical Coherence Tomography

2009 Bepi Colombo Prize, for achievements in research, innovation, and tech. transfer

2007 R&D 100 Award: Adaptive Optics Scanning Laser Ophthalmoscope (MAOSLO)

2005 U.S. Patent (#6,929,721) Ion beam modification of residual stress gradients in thin films

2004 U.S. Patent (#6,705,345) Micro valve arrays for fluid flow control

2003 R&D 100 Award: MEMS-based adaptive optics phoropter (MAOP)

2003 U.S. Patent (#6,529,311) MEMS-based spatial-light modulator

1998 U.S. Patent (#5,783,371) Process for manufacturing optical data storage disk

1997 U.S. Patent (#5,503,963) A new method for manufacturing optical disc stampers