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M
icro/nanoelectromechanical systems (MEMS/NEMS)  
provide the engineer with a powerful set of solutions 
to a wide variety of technical challenges. However, be-
cause they are mechanical systems, response times can 
be a limitation. In some situations, advanced engineered 

drive techniques can improve response times by as much as a thou-
sand fold, signi�cantly opening up the application space for MEMS/
NEMS  solutions.

MEMS are micromachines built using silicon micromachining pro-
cessing techniques, similar to those found in very large-scale integra-
tion fabs. Using a combination of patterning, deposition, and etching 
techniques, structures can be built with microscopic moving parts with 
characteristic dimensions ranging from nanometers to millimeters. 
MEMS differ from typical integrated circuits in that they have the abil-
ity to leverage mechanical degrees of freedom to perform a function. 
They can be integrated with on-chip electronics to enhance their perfor-
mance, thereby optimizing the electromechanical transduction. 

Today, MEMS devices are a mature technology with a total market of 
US$11.1 billion in 2014, which is expected to grow to over US$20 billion 
by 2020. Applications range from airbag and pressure sensors in cars [1], 
microphones [2] and accelerometers in smartphones [3], [4], to micro-
mirror displays [5]�[7]. MEMS devices fall into two broad categories: 
sensors and actuators. Sensors measure things like pressure [8], forces 
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[9], [10], and acceleration, for example, to detect whether a 
car crash has occurred [11], [12]. Actuators are devices that 
move in response to a command. MEMS micromirrors, 
such as those shown in Figure 1, are examples of actuators 
that have the ability to steer and/or focus light by mechan-
ically changing their shape and orientation. The focus of 
this article is how to steer MEMS actuators using advanced 
drive techniques. Such command shaping methods are 
used for rapid end-point positioning, in this case with the 
aim of zero vibration (ZV). Fast point-to-point transitions 
are accomplished without actuating the resonant modes. 
While the focus is on micromirrors, the techniques are uni-
versally applicable to most actuator systems that can exhibit 
a resonant response.

MEMS micromirrors, an important subset of the actuator 
market, are used in a wide range of applications to rapidly 
deflect and focus light. Figure 1 shows two such examples, 
both of which were fabricated using the multiproject wafer 
process PolyMUMPs by MEMSCAP [13]. Figure 1(a) is a 
commercial MEMS device with a mirror roughly 500 �m in 
diameter that can pivot about two axes using electrostatic 
actuation. An array of these mirrors form the optical switch-
ing element for the Lucent LambdaRouter [14]. Figure 1(b) 
shows a mirror driven by thermal bimorphs, which are 
composed of silicon and metals (in this case chromium and 
gold) that bend in response to a change in temperature. The 
small thermal capacity allows for small amounts of electri-
cal power to generate significant temperature differences in 
the bimorph structures. Optical beam steering for smart 
lighting systems is achieved by controlling the temperature 
of each of the four bimorphs. At the same time, the focus 
can be tuned by varying the temperature of the mirror itself 
[15]. MEMS micromirrors are used today for digital cam-
eras [16], [17], network elements in optical networks [18], 
bar code scanners in supermarkets [19], retina scanners [20], 
and numerous other optical systems [21]�[23]. In all cases, 
an electrical signal is applied and the mirror responds, 
going from one setpoint to another. An important design 
attribute is the ability to do this quickly, that is, a fast step-
and-settle response. This article shows how using advanced 
drive techniques can reduce this step-and-settle time by a 
factor of over 1000, which is a significant benefit for the sys-
tems designer.

The control methods discussed here allow the MEMS 
engineer to escape some of the constraints imposed by the 
physics of the response times of a simple harmonic oscilla-
tor. For example, when building a MEMS device such as a 
micromirror, there are tradeoffs between range of motion, 
response time, and optical loss. In a standard micromirror 
system, the mirror is connected to a spring. Typically, a soft 
spring yields a larger range of motion than a stiff spring 
and, as the diameter of the mirror is increased, the optical 
losses decrease. Yet large mirrors are heavy, and combining 
them with soft springs turns them into high-quality-factor 
devices with low resonant frequencies, and consequently 
long settling times. However, the techniques discussed 
here can open up phase space significantly in terms of re-
sponse times. For example, implemented on a commercial 
MEMS mirror used as an optical switch (discussed below), 
advanced control techniques can improve the step-and-
settle response time from a relatively slow ~300 ms to just 
~300 �s, an improvement of a factor of 1000. Where slow 
devices have more space for improvement, it is also shown 
how the settling time of a much smaller and faster device is 
reduced from over 100 �s to just 17 �s. Given the scaling 
laws governing the dynamics, to achieve an improvement 
in response time by a factor of 1000 would require modify-
ing either the mass or spring constant by a factor of 1 mil-
lion. This is often impractical, if not impossible. Decreasing 
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the mass will diminish the optical efficiency, and stiffening 
the springs impedes motion and reduces angular range. 
Using advanced drive techniques eases the design con-
straints and helps make MEMS devices a better fit for a 
range of interesting and novel applications.

Many MEMS mirrors can be approximated as damped, 
driven harmonic oscillators. For such systems, the settling 
time is characterized by the ring-down time. After a mechan-
ical perturbation, a linear dissipative system will lose ampli-
tude exponentially as it oscillates (or settles) into a new static 
position. This settling time �  defines the duration of the 
exponential decay and is a measure of the oscillation fre-
quency /T2~ r�� � and dissipation Q�1 (the inverse of the 
quality factor)

 ,Q Q
k
m m2 2x

~ r c
� � �  (1)

where m  is the mass and �  is the loss factor of the reso-
nance mode. Relevant in the context described here is the 
relationship of the dissipation to the number of oscillations 
during the ring-down

  ,lnN Q2
�

�
� �

 (2)

where N  is the number of times the resonator oscillates 
until losing one-half of its initial amplitude. It is notewor-
thy that the number of oscillations is independent of both 
the resonant frequency and the amplitude; this is only true 
for linear systems, such as those considered here.

Reducing the quality factor decreases the settling time, 
but a low Q, or high dissipation, is more consequential than 
just the equivalent of applying the brakes. The dissipation is 
a measure of the coupling of the resonant mode to the envi-
ronment: the ability to remove energy from a resonator 
(through losses, that is, low Q) is mirrored by the resona-
tor�s ability to sense its environment and absorb energy 

from the surroundings, often in the form of noise [24]. A 
major advantage of MEMS devices is the high frequency 
and concomitant low coupling to the environment, making 
them stable, mechanically quiet, sensitive, and energy effi-
cient. Both mechanical and electrical noise typically fall off 
as 1/f, so operating at high frequencies pushes the dynamic 
response away from noise sources. A high quality factor de-
couples the mode from extrinsic disturbances and is there-
fore often desired. In certain MEMS designs, quality factors 
can exceed 106 [25], [26] and frequencies can range from 102 
to 108 Hz, producing transient times that can reach 104 s (al-
most 3 h!). This is impractical as a useful device should have 
response times on the order of milli- or even microseconds. 
It is shown here that, by applying a specific drive force, 
termed a double-step drive, the ring-down can be complete-
ly eliminated, and force the MEMS device to settle in a time 
equal to half of its natural period of oscillation. The result is 
universal for such systems and has been implemented in 
wide range of resonant systems, including MEMS [27]�[32]. 
While this article presents an analytical solution for linear 
(or almost linear) systems, input shaping for nonlinear sys-
tems has also been extensively studied [33]�[36]. Provided 
that there are minimal drift or other instabilities, this meth-
od can replace more complex closed-loop systems that also 
offer rapid settling times [31], [37]�[39], but require sensing 
for feedback using PID (proportional-integral-derivative), 
additional control electronics, or learning algorithms [40]. 
Even in cases where active feedback is required due to high 
precision requirements or creep in the MEMS material, us-
ing the proposed double-step drive technique provides an 
excellent prediction of the response and can help stabilize 
the system. The double-step drive presented is well known 
in control theory, specifically as a feedforward, or input-
shaping approach [41]�[43]. In this article, a time-domain 
derivation is used to determine the fastest possible settling 
time of a resonant system. The results are equivalent to 

(a) (b)

200 �m 300 �m

FIGURE 1 Two microelectromechanical system micromirrors. (a) A component of the LambdaRouter, built by Lucent Technologies. The 
mirror pivots around two axes and is used as the optical switching element in a large network cross-connect. (Photo courtesy of Lucent 
Technologies Inc.) (b) A varifocal mirror, driven by electrothermal bimorphs, used for beam-steering in a smart lighting application.
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solutions based on command shaping of second-order sys-
tems [44], [45]. To aid readers familiar with the standard 
control theory formalism, the well-known prefilter transfer 
functions are included for key results. A common applica-
tion of feedforward drive schemes is in the stabilization of 
piezoelectrially driven atomic force microscope cantilevers. 
This type of MEMS is not described here but is well covered 
in the existing literature [42].

The next section presents the analytic model, showing 
how to eliminate ring-down by applying advanced drive 
forces to a linear damped resonator. The only prior knowl-
edge required to apply this technique is the mode period and 
dissipation as well as the assumption that the device is at rest 
before any change in amplitude is attempted. [If not fully at 
rest, then the device must be moving slowly compared to the 
typical actuation velocity, that is, ( ).v x�� 0 0�  In this limit, the 
device is quasi-static and the externally applied force is in bal-
ance with the restoring force.] No sensing or active feedback 
is required; this greatly reduces the complexity and computa-
tional power needed for controlled point-to-point electrome-
chanical transduction. The practical application of this theory 
is demonstrated for the four devices in Figure�2. These MEMS 
devices use electrostatic, electromagnetic, or electrothermal 
forcing to deflect a beam of light. In each case, the settling time 
is significantly reduced, validating the universality of the 
model and demonstrating specific features of the approach. 
The examples provided are illustrative of the large reductions 
in the settling time that can be achieved. In the final section of 
this article, a method is considered involving overdriving 
MEMS devices to further decrease the response time in a 
regime unconstrained by the intrinsic restoring forces of the 
device itself. This is a form of bang-bang control [46] that 
gives an optimum in settling time for a given maximum avail-
able force. Additional considerations are also presented on 
the effect of higher-frequency modes, and an alternate reso-
nant drive is presented. The robustness of the approach is 
also considered in detail, demonstrating the sensitivity to 
detuning of the drive parameters.

THEORY: THE ANALYTIC SOLUTION  
TO TERMINATE RING-DOWN
This section presents the theory governing the double-step 
drive technique. As will be shown, the point mass, linear low-
dissipation model is sufficient to predict the precise settling 
time of many real-world MEMS devices. Such a system is 
described by the differential equation

 ,mx x kx F t�+ + =op � �  (3)

where x and the time derivatives thereof represent the posi-
tion, speed, and acceleration of a device of mass m, driven by 
the force ( ),F t  which is balanced by the restoring force of the 
spring characterized by the spring constant k. As the device 
moves, it loses energy at a rate proportional to the velocity, 
characterized by the loss factor ,�  as introduced in the previ-
ous section. Provided with energy, a system described by (3) 
will oscillate if the damping is below the critical value of

 .m2< c 0c c ~=  (4)

The solution to (3) for a step input force (F t 0 0< =� �  and 
),F t F0> 0=� �  starting at rest from the origin ( ( ) ,x 0 0 m�  

( ) )x 0 0 m/s��  [47] 
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� � � �� � ��  (5)

with /( );cos m2 0z c ~�� �  see �Open-Loop Step Response� 
for more details. F0  is the force required to reach and stay 
at the steady-state position x0  after all ringing has sub-
sided. Given the linear restoring force, (5) is valid for any 
change in forcing described by a step function for a MEMS 
mirror, initially at rest. In other words, (5) describes any 
transition between two setpoints resulting from two con-
stant levels of applied force.

The force F1  and duration t1  needed to settle the oscilla-
tor without overshoot beyond a final resting position x0  can 
be determined using (5). The requirements for such a system 
are a balance between the external forcing and spring restor-
ing forces at position x0  as well as a vanishing velocity at 
that position. If all forces are balanced and the system is at 
rest, then the system will stay at x0  indefinitely. The initial 
force needed will depend on the final desired position, the 
restoring spring constant, and the dissipation. Essentially, 
the overshoot of the dynamic response resulting from F1  is 
used to reach the steady state when applying the force .F0  
Normally, the overshoot is an unwanted side effect of apply-
ing a step function drive to a resonator. Here, by carefully 
engineering the drive, the overshoot is leveraged to reach the 
desired position. Once the desired position is reached, the 
force is quickly switched from F1  to ,F0  completing the 
second step of the double-step drive. This results in the fol-
lowing two boundary conditions

 ,x t x1 0�� �  (6a)

 ,x t 01 �� � �  (6b)

MEMS micromirrors, an important subset of the actuator market,  
are used in a wide range of applications to rapidly deflect and focus light.
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FIGURE 2 Microelectromechanical system (MEMS) mirrors using different electromechanical transduction schemes. (a) An optical 
micrograph of a commercial optical cross-connect mirror by CrossFiber. The electrostatically actuated MEMS uses a gimbal design. 
Four sets of capacitors are needed to generate the electrostatic bidirectional force along two axes. (b) An array of mirror elements form-
ing a spatial light modulator (SLM). SLMs correct optical wavefront phase errors in imaging systems such as microscopes and tele-
scopes (adapted with permission from [27]). (c) A gimbal design for two-axis rotation, driven by a permanent magnet mounted to the 
central mirror (shown in the lower diagram) and two sets of orthogonal electromagnets. (d) A thermally driven single-axis mirror. Joule 
heating results in strain gradients along the thickness of the bimorphs changing their radius of curvature, thus moving the mirror.
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where t1  is the time at which the resonator reaches the 
target position. Solving for the minimum nonvanishing 
value of t1  at which time the system is at rest using 
(6b) gives

  
 

,t T

m
2

1 2

1
1

0

0

2

~
c

=
- � �

 (7)

where T0  is the period of oscillation of the actuated mode. 
Substituting (7) into (6a) and (5), then solving for ,F1  gives 
an expression for the force required to reach x0

   .F F
e

1
1

1
m t

1 0
2 1

= -
+

�� �  (8)

F1  and t1  are plotted as a function of the dissipation /m�  
in Figure 3. For vanishing dissipation, /F F 21 0�  and 

./t T 21 0�  For a wide range of practical MEMS devices, this 
set of solutions works very well and is easy to implement in 
realistic drive circuits. As the dissipation approaches the 
critical value of ,m2c 0�c c ~�  F F1 0�  and .t  1 � �  These 
two extremes are expected because, without dissipation, 
the overshoot is twice the equilibrium value (due to the 

Open-Loop Step Response

The MEMS resonators considered here are guided by a few 
key assumptions. These include instantaneous force upon 

actuation and a linear response to the force. A linear, driven, 
damped harmonic resonator is described by (3), which, for an 
instantaneous step force, can be written as

 ,x m x x m
F H t 0

2 0
0

c
~+ + =op � �  (S1)

where H t0� � is the Heaviside function for a step function begin-
ning at t t0�  and /mk0� �  is the natural frequency of the 
resonator. (For all following equations, t 00 �  can be assumed 
without any loss of generality.)

The solution to (S1) is a superposition of a particular solu-
tion of the nonhomogeneous equation and the general solution 
of the homogeneous equation (where ).F 00 �  The particular 
solution depends only on the force function and is 

 / .x t F kp 0�� �  (S2)

The homogeneous differential equation is linear with constant 
coefficients and can be solved by finding the roots of the char-
acteristic equation. In the low dissipation limit ( / ),m2 10 �c ~  
the roots are complex and / m1 21 0 0

2~ ~ c ~= - � � ��  is the res-
onance frequency of a damped harmonic oscillator. The gen-
eral solution with two integration constants can be written as

 .sin cosx t e c t c tg m
t

2 1 1 2 1~ ~= +
c

-� �� �  (S3)

The solution is constrained by the initial conditions, which 
require that x 0 0�� �  and x 0 0�� � �  for an unperturbed, station-
ary system at .t 0�  Given the solution ,x t x t x tg p= +� � �� � �  the 
two coefficients c1  and c2  are determined. The zero-amplitude 
condition /x c F k0 02 0= + =� �  requires that / .c F k2 0=- � �  While 
the zero velocity at ,t 0�  / / ( ,)x F k m c0 2 00 1 1c ~= + =� � � �� � �  re-
quires that ( / ) ( / ( )).c F k m21 0 1c ~=-  Reconstructing the total 
solution results in

 .sin cosx t k
F e m t t1 2m

t
0 2

1
1 1~

c
~ ~= - +

c
-� � �� ��  (S4)

Redefining some of the variables in (S4) can simplify the equa-
tion significantly by making it dependent on only a single trigo-
nometric function. Defining /cos m2 0z c ~� � � and keeping in 
mind the relationship between 0�  and ,1�  the latter can be 
written as .sin1 0~ ~ z�  Rewriting (S3) in terms of a single 
trigonometric function with a phase ,�  the final form is 

 ,sin
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sin cosx t k
F e t t1 m

t
0 2 1 1z

z
~ ~= - +

c
-� � �� ��  (S5)
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F e
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c

~ z= - - +
c

-
� � � � ��  (S6)

RING-UP FOR HARMONIC DRIVE
A harmonically driven resonator will respond as a function of 
the forcing amplitude and frequency. For on-resonance drive, 
the amplitude is limited by the dissipation of the resonator. The 
general response of a system initially at rest takes the form

 ,sin cosx t A e m t A t1 2t m
t

t2
0

2

0~
c

~ { ~ {= - + + -
c

-� � � �� � � �

 (S7)
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A At
t�

�
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where d�  is the phase of the drive and �  is the drive fre-
quency. After the transient time has elapsed, the response be-
comes the well-known solution to the damped driven harmonic 
oscillator driven to amplitude A. In the example of harmonic 
drive given above, the drive frequency was set to resonance.
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conservation of energy) and hence only half of the final 
force is required. Without dissipation, the maximum over-
shoot of the ringing occurs for the first time at half the 
period; hence the final position is reached at / .t T 21 0�  In 
the high dissipation limit, no ringing occurs. No overshoot 
means that the full force must be applied and the device 
approaches the desired position asymptotically. Many 
MEMS devices, especially when operating in a vacuum, 
will be very close to the zero-loss limit when implementing 
the double-step drive. Illustrated in Figure 3(b), in the limit 

/( ) ,m2 0�c ~  the correction to t1  is vanishingly small. The 
increase of the force grows linearly with dissipation but, as 
a practical matter, /F F 2�1 0  must be considered only when 
driving MEMS devices with quality factors below roughly 
100. The equivalent result can be obtained by considering 
the superposition of two ring-down response curves as 
described by (5), the first commencing at t 0�  and the 
second at .t t1�  Since the system is at rest at ,t1  (5) is still 
valid. For the correct initial forcing, the resulting ring-down 
curves add to a new constant position x0  [27], [48].

Finite-width pulses have also been considered as shap-
ing inputs to minimize vibration, where, as in the case pre-
sented here, only the mode frequency and dissipation are 
required as input parameters [49]. The feedforward input 
sculpting produces the same solution as derived here, and 
is presented in detail in �Feedforward and Feedback Drive 
Filters.� Important for control theory is knowledge of the 
prefilter, which in this case is written as [44], [50], [51]

 .F s F F e1  t s
1 1

s= + - -� �� �  (9)

The significance of this formalism, and how it helps control the 
vibrational modes of MEMS, is discussed for the two-fold dou-
ble-step drive of the magnetically driven mirror. This filter can 
be adapted to further reduce the settling time, in what is 
referred to as overdrive, and is demonstrated using finite-ele-
ment simulation later in this article. A variation has been 
experimentally implemented [31] and is discussed as well.

The calculated position as a function of time, along with 
the drive force, is plotted in Figure 4. The effect of dissipa-
tion on the initial force step is illustrated, and the single-
step response is included for comparison. The time axis is 
normalized to the period of the resonator. This drive 
method achieved the fastest possible settling time by elim-
inating all ringing, but the time is still determined by the 
mass and spring constant of the device because they set the 
fundamental resonant frequency of the undamped system 
and, hence, the deceleration amplitude.

Naturally, a resonator can be accelerated almost arbitrarily 
quickly by increasing the initial drive force. The resulting 
speed will be too high for the restoring force of the spring to 
bring the device to rest when it reaches .x0  Consequently, a 
decelerating force must be applied. In the extreme forcing 
limit, this approaches the particle-in-free-space scenario. 
First the device is accelerated and then subsequently deceler-
ated, arriving at the final position with no net force on the 
device, and with zero velocity. This overdrive forcing method, 
or bang-bang control mode, along with an alternative reso-
nant drive scheme is discussed later in this article. To con-
clude, the stability of the double-step drive is analyzed with 
regards to forcing errors in time and amplitude. Fourier anal-
ysis is used to demonstrate  how high-frequency modes are 
affected by the various drive schemes and the effects of soft-
ening, or rounding the edges of the drive force, are discussed 
(expected with any physical actuation).

In the next section, experimental implementations of the 
double-step drive are presented. It is shown that by using 
this drive scheme, the settling time of a commercial device 
can be reduced by three orders of magnitude.

EXPERIMENTAL REALIZATION OF  
THE DOUBLE-STEP DRIVE FOR THREE  
MEMS TRANSDUCTION METHODS
The theory presented here is very general and applicable to 
all linear, harmonic systems. For this reason, the double-step 
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FIGURE 3 Force and timing of steps as a function of ( ).m2 0c ~
(a) Force and duration of the first step in double-step actuation 
mode as a function of dissipation. For dissipation-free systems, 
the force and time are both half the final force and period, respec-
tively. With increasing dissipation, the force increases linearly and 
saturates as the dissipation exceeds the critical limit. (b) A log-log 
plot of the additional duration of the applied force F1  beyond /T 20

as a function of dissipation. The correction is only a small fraction 
of the oscillation period until the critical dissipation is approached, 
at which point the time diverges.
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drive can be implemented not only on mechanical systems 
but any linear resonant system. The point-mass equations 
described above are applicable to MEMS devices that can be 
characterized by a mode-dependent effective mass and 
spring constant. In this section, the double-step drive is illus-
trated on four different MEMS devices, using electrostatic, 
electromagnetic, and electrothermal transduction. Each 
method has specific advantages and drawbacks. The techno-
logical details, specifically related to the control of the 
applied force, vary. Specifically, the drive signal may not be 
proportional to resulting force, and the force resulting from 
the drive signal may not result in a linear change of ampli-
tude. The notation of single- and double-step drive is with 
respect to the forcing. The actual drive signal, typically an 
applied voltage or current, may differ greatly from the step-
function forces. However, in all cases, a transfer function can 
be defined to adapt the drive and effectively translate it back 
to the linear equivalent. For example, as will be seen below 
for capacitive drives, the forcing is linear in C and hence, for 
a linear spring system, the amplitude (and force) is propor-
tional to V2. The ability to create this transfer function in a 
reliable way is often the limiting factor for implementing the 
double-step drive effectively in nonlinear systems.

The electrostatic examples will illustrate the benefits of 
using the double-step drive on two commercial MEMS 
devices. For all measurements, the location of a laser spot 
reflected off the micromirrors was measured using a posi-
tion-sensitive detector (PSD). A reduction in the settling 
time of three orders of magnitude is demonstrated for opti-
cal switches in a torsional system. The second capacitive 
example is that of a piston mode used for a spatial light mod-
ulator (SLM), which demonstrates a settling time improve-
ment of more than a factor of five. The high-quality-factor 
magnetic scanning mirror example demonstrates that the 
double step can be implemented even when multiple modes 
are driven by the applied step function in torque. Finally, 
considering a thermally actuated device, the difference 
between resonant actuation and creep is illustrated. The 
advanced drive scheme can facilitate rapid mirror position-
ing for devices with nonlinear responses by separating the 
resonant and transient responses. The most relevant experi-
mental results and parameters are tabulated in Table 1. It is 
worth noting that both the capacitively driven CrossFiber 
optical cross connect and the thermally actuated scanning 
mirror were controlled by an Arduino microprocessor and a 
simple amplifier circuit, at a cost of under US$5 per channel. 

For each device, the needed parameters fn  and Qn  where 
determined experimentally.

ELECTROSTATIC DRIVE: HIGH-SPEED, SMALL-
ANGLE DEFLECTIONS FOR LOW-POWER MEMS
The electrostatic, or capacitive, force is one of the most 
common drive methods for MEMS because the electrical 
signals are easy to generate and energy consumption is 
minimal, ideally only the charging energy of a very small 
capacitance. The resulting force Fc  is a function of a change 
in capacitance with respect to displacement

 ,F dx
dE

dx
dC V2

1
C

i

C

i

2
i � �  (10)

where Ec  is the energy of a capacitor of capacitance C  
charged by the potential ,V  and the force acts along the 
dimension i. Because the force scales as ,V 2  the two capaci-
tor plates are always attracted toward each other, no matter 
the polarity. To create bidirectional motion (that is, angles), 
two capacitors are used. The most common implementa-
tions include parallel-plate or comb capacitors. Parallel 
plates are ideal for small displacements perpendicular to 
the capacitor plates, with

,C x x
A

x
A

x
x O x

x1pp 0
0 0

0

0 0

2�� �= - + +� � � �8 B

and

,dx
dC

x
A
0
2

0 �� � �

where A is the area, 0�  the permittivity of free space, and x0  
the capacitor gap when no voltage is applied. Examples 
include the LambdaRouter and an SLM depicted in Fig-
ures�1 and 2, respectively. These expressions are valid only 
for the simplest case and must be modified for angular actu-
ation where the capacitor plates are no longer parallel. The 
change in capacitance, and thereby the force, is inherently 
nonlinear, both in displacement and drive voltage. Comb 
actuators are typically used for long-range linear displace-
ment that is parallel to the capacitor, with a capacitance and 
force given by ( ) /C N tx g2ca 0��  and ( ) ,/F N Vt gca 0

2��  
respectively. (The capacitance is often offset by an initial 
overlap of the combs.) Here, N  is the number of combs, and 
t  and g  are the comb thickness and gap, respectively. There 
are cases where a vertical comb-capacitance configuration 
is used to generate a torque to pivot a mirror [52], [53], as is 
the case for the CrossFiber device discussed next.

The control methods discussed here allow the MEMS engineer  
to escape some of the constraints imposed by the transient  

response times of a simple harmonic oscillator.
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The linearization of the force is straightforward for the 
comb actuator, where the drive parameter becomes V2. The 
parallel-plate capacitor is more complex. For small displace-
ments, the force is again linear in V2; however, for moderate 
displacements, linearity becomes a poor approximation. The 
force is a function of both voltage and the displacement. 
Therefore, when switching between two points, the instanta-
neous position during the crossover must be considered and 
the applied voltage must be adjusted accordingly to main-
tain a constant force. As the displacement approaches the 

one-third pull in [54], the system becomes unstable, and all 
higher terms must be considered. Reference [34] presents a 
model and simulation results for a nonlinear multimodal 
MEMS with shaping control based on an iterative energy-
balance argument to extend the range of the double-step 
drive all the way to the pull-in point. Furthermore, it has 
been demonstrated that command-shaping methods can not 
only minimize motion-induced vibration but also minimize 
impact in capacitive MEMS pull-in devices such as RF 
switches [36].

Feedforward and Feedback Drive Filters

FEEDFORWARD FILTERS

I n control theory, the Laplace domain is used to determine the 
command required to obtain a desired outcome. An overview of 

control theory is given by [50]. The block diagrams in Figure S1 
depict different scenarios. In Figure S1(a) the simplest case is 
illustrated, where only a feedforward command is included. In 
this formalism, the response is 

 ,s s s sY FG R�� � � �� � � �  (S12)

where the position is determined by taking the inverse Laplace 
transformation of sY� � as [ ( )] .y st Y� 1= -� �  Here /s s1R �� �

represents the step function in the Laplace domain, and ( )sG  
is the second-order transfer function describing an under-
damped harmonic oscillator, which takes the form 

 ,G s
s s2

 
2

0 0
2

0
2

g~ ~
~=

+ +
� �  (S13)

with / ( )m2 0g c ~� .
The input command, or command shaping in the Laplace 

domain, is ( ) ( ) ( )T s F s R s .�  Since ( )sR  is given by the con-
troller (here the desired response is a step function), the task 
remains to define the filter ( )sF . This can be achieved by apply-
ing the Posicast input command shaping method (PICS) and 
is illustrated in the literature for general transfer functions [44], 
[72], and for resonant systems in particular [51]. In this article 
the �filter� is derived in time domain. Transforming the results 
into the Laplace domain reveals the prefilter formalism used in 
control theory.

Consider the double-step drive. The input command is a 
two-stage step function characterized by F1  and t1 . Hence, in 
the Laplace domain the command becomes

( ] ,T s H H t s e0 1 1 1 1  F F F� t s
1 1 1 1

 t= + - = + - -� � � � ��� � � � ��  (S14)

where H(t) is the Heaviside function. Since ( ) /s s1R � , the in-
put filter is known in the Laplace domain

 
 .s e1 1 FFDS

t s
1

 1= + - -� � �� � �  (S15)

One of the strengths of this method is that it can be ap-
plied to each mode of the resonator in a general fashion. 
Likewise, the two-fold double step has an input filter of the 
form s s e e1 1 1 1F F F FDS DS

t s t s
1 2 1 2

  1 3�= + - + -- -� � � � � �� � � � � �. It 
must be remembered that the second-order transfer function 
should also be modified so that , , , , .s s sG G G0 0 1 1~ g ~ g�� � �� � �  
It naturally follows that this can be expanded to include an ar-
bitrary number of modes.

Analogously, we determine the input filter for the overdrive 
a and b actuation schemes, to obtain

 ,s e e2 1F F F Fa m m
t s

m
t s

 
  

Overdrive
1 2= - + +- -� � �� � �  (S16)

 .s e eF F Fb m m
t s t s

 
  

Overdrive
1 2= - +- -� �� �  (S17)

The smoothed input commands do not have simple closed-
form solutions, but the same method can be applied numeri-
cally as needed.

FIGURE S1 Control theory diagrams. (a)  A feedforward-only 
command, (b) feedback, where K(s) is based on a PID control 
mechanism, and (c) the implementation of feedforward com-
bined with feedback. D(s) represents a disturbance; if it is known 
(measured), then it may also be compensated using feedfor-
ward-command shaping.
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In the steady state, no current flows, so the power con-
sumption is low. The electrical settling time is characterized by 

,RC R� �  being the lead resistance of the capacitor. As the 
capacitance is typically small (picofarads), �  is often on the 
order of nanoseconds, sufficiently fast for MEMS. The small 
capacitance is also one of the drawbacks of electrostatic MEMS, 
since it produces low driving forces. For parallel-plate capaci-
tors, the gap may be decreased to improve the electromechan-
ical transduction; however, the resulting range falls off as 
quickly. To compensate for these effects, large-gap devices 

require high voltages to operate, which increases the complex-
ity of the drive circuits. Consequently, scanning mirrors often 
use comb capacitors, which are not limited by the one-third 
pull-in effect. SLMs, which typically require a small throw, of 
order half the wavelength of the reflected light, usually use 
parallel-plate capacitors as a drive mechanism.

The commercial optical cross-connect device from CrossFi-
ber, shown in Figure 2(a), uses two sets of vertical capacitive 
comb drives and a gimbal to pivot a mirror about two axes. 
Since it is proprietary, the technical specifications and details 

Using the prefilter formalism, a stability analysis can be per-
formed, where the result reproduces the solution discussed in 
the main text, which used the Fourier transform and simulation 
methods to determine the sensitivity to detuning. The numeri-
cal solutions to the Laplace transform can be determined more 
easily than the simulations and is well suited for such studies. 
Using this method it was confirmed that the overshoot scales 
as � (�/ ) ( / ) ,x t TF ERRDS 0 0� ��   � ( � / ) ( / ) ,x t T4 F Fa m ERR0 0 Overdrive � ��  and  
� ( � / ) ( / )x F t T2 Fb m ERR0 0 Overdrive � �� , with respect to small detuning 
in ,t1  ,t a1  and ,t b1  respectively.

Feedback Control Using PID
For comparison with the feedforward input filters, it is illustrative 
to determine what a feedback drive scheme may look like. The 
PID loop is the most commonly implemented feedback method, 
typically used for flow rate or temperature control systems. For a 
second-order system the ideal P, I, and D parameters can be de-
termined analytically. The open-loop second-order system be-
comes first order when the loop is closed using a PID controller, 
and this first-order system exponentially approaches the desired 
setpoint. In theory, there is no minimum in the obtainable re-
sponse time; however, experimentally instabilities and maximal 
applicable forces impose lower bounds. The model illustrated in 
Figure S1(b) becomes, in equation form, 

 .s s s s sKY R YG= -� � � � � �� � � � ��  (S18)

The transfer function is the ratio of the output over the input, 
and hence

 ,T s s
s

K s s
s1 1

1
1

1
R
Y

G
�= =

+
= +�

�
�

� �

�
�
�

� �

 (S19)

which is a first-order transfer function with a well-behaved re-
sponse. Following the notation of [73], an ideal transfer func-
tion can be determined of the form 

 ,s s
K T s T s T T

1 1  K p d

d i d

2= + +� �� �  (S20)

which eliminate the poles for carefully chosen Td  and Ti  parame-
ters. This is achieved by setting / ( )T 1 2d 0g~�  and /T 2i 0g ~� . By 
plugging (S20) and (S13) into (S19), it is possible to solve for the time 
constant ( ) / ( )K2 p0x g ~� . Typically, the settling time is defined 
when the approach has reached within 2% of the target or t 4s �� .

In principle, the PID feedback loop can be tuned to set the 
response time to be arbitrarily small. ,Kp  however, is divergent 
for a vanishing � , corresponding to an unbounded force, which 
is, of course, prohibited. Furthermore, instabilities make the 
implementation of PID loops impossible for very high gains. 
Lastly, while it can be shown that a PID-controlled resona-
tor can settle by /T 20  while maintaining a force F0� , this is 
only achieved by carefully tuning the control loop parameters, 
which again depend on f0  and Q . As a result, the same knowl-
edge of the system is required as was used for the feedforward 
drive: Drifts in the MEMS parameters will also set a limit on the 
effectiveness of feedback loops. Just as observed for the over-
drive examples, the overshoot due to detuning errors scales 
with the required forcing.

For implementation, the feedback poses additional bur-
dens. Fabrication needs to include a sensitive sensing mecha-
nism, increasing complexity and often adding to the MEMS 
size and cost while degrading performance. Finally, during 
operation, continuous feedback would be needed. Finite sam-
pling time [31] and minimum measurement-integration time 
can also set a limit to the efficiency of a feedback loop.

This is not to claim feedback is not without its advantages. 
It is noted in [73] that the primary capacity of a PID feedback 
system is to eliminate offset (or steady-state error). For MEMS, 
this means that a PID loop can effectively eliminate drift, but it 
is not ideally suited to eliminate the resonant response, which 
can be done more efficiently with a much simpler to imple-
ment feedforward command. A possible ideal implementation 
is illustrated in Figure S1(c), which combines both feedforward 
and closed-loop drive sculpting and is discussed fully in the 
literature [50]. Such control systems can also mitigate a distur-
bance factor, which, if measured, can be compensated using 
feedforward filters.
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of this device will not be discussed here. It is straightforward, 
however, to measure the electromechanical transfer function 
and ring-down. All the parameters needed for a double-
step drive can be extracted from the ring-down plot [see  
Figure 5(a)]. After measuring the mode frequency and cor-
responding quality factor, the double-step drive was imple-
mented. In this case, the drive force for a capacitive system 
scales as V2. The amplitude response of the double-step drive 
scheme is plotted in Figure 5(b) for a positive as well as a neg-
ative deflection angle. Note from the x-axis that the settling 
time was reduced by almost three orders of magnitude, from 
~300 ms to ~320 .s�  Consequently, any optical signal passing 
through the CrossFiber module can be redirected in only  
320 ,s�  a settling time of just 6% above the theoretical settling 
time limit of /T 20 . (A frequency sweep revealed the reso-
nance frequency of 1657 Hz and corresponding period of  
604 .s� ) There are lower-frequency modes visible in the fast 
Fourier transform (FFT) of the ring-down; the transduction is 
sufficiently weak so as not to interfere with the settling time. 
The best results were achieved for .F F0 521 0�  to account for 
the losses. The CrossFiber LiteSwitch, a product consisting of 
an array of 96 photonic switches, advertises a typical switch-
ing time of 25 ms. It is demonstrated here that this could be 

TABLE 1 A summary of experimental parameters and expressions. f0 and Q are the resonance frequency and corresponding 
quality factor, respectively, of the device. t1 is the time and F1 is the force used for the double-step drive. C is the capacitance, 
L the inductance, and R the resistance of the drive circuit operated at frequency .�  The thermal timescale is characterized by 
the device length L, density ,�  heat capacity Cp, and thermal conductance .th�  The  capacitive actuation is voltage biased V, 
the magnetic actuation is the product of the magnetization M, and the applied field B generated by a current I glowing through 
coils of resistance R. The thermal force is the product of the temperature difference �T and the thermal expansion coefficient 

,�  and scales with the Young’s modulus E and the cross-sectional surface area A.

Electrostatic  
(CrossFiber)

Electrostatic  
(Spatial Light  
Modulator) Magnetic Thermoelectric

f0 [Hz] 1657 80,029 320, 1177 66.76

Q
 m Hz2

�� �6 @  
265
(19.6)

6.3
(37037)

3100, 260
(0.323, 14.2)

13.97
(15)

t1 [s] ([T0]) 320 � 10�6  
(0.536)

6.6 � 10�6

(1.2)
1.56 � 10�3,  
0.42 � 10�3 (0.5)

7.5 � 10�3

(0.5)

F1 [F0] ([P0]) 0.52 0.59 0.5 (0.531 up, 0.520 down)

Impedance ( )� / ( )C1 � L� R(T )

Forcing timescale �  [s] RC< 1 ns L/R ~ 1 ms L C
th

p
2

2

r l
t ~ 1 ms

Force [N]/torque [Nm] dx
dC V2
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2� M B� ~E TA��

Setpoint power [W] ~0 I2R I2R(T) or V2/R(T)
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V e
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FIGURE 4 The single- and double-step response of a dissipative 
resonator. Using / ( ) .m2 0 2c r�  results in the rather rapid decay of 
the single-step response. The duration of the first step of the dou-
ble-step forcing scheme is very close to / ,T 20  while the forcing 
must be raised to . ,F0 58 0�  where F kx0 0�  is the steady-state 
force required to reach .x0
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reduced considerably without the use of complex and expen-
sive feedback circuits and without increasing the power con-
sumption of the drive circuit.

The second example of an electrostatically driven MEMS 
device is the SLM seen in the drawing in Figure 2(b). While 
the previously described electrostatically driven mirrors 
perform tip-tilt deflections, the SLM is actuated in piston 
mode. Changing the height of the mirror locally shifts the 
phase of a reflected wavefront. An array of such indepen-
dent elements is used in imaging systems, such as tele-
scopes and microscopes to correct for wavefront phase 
errors [55]�[57].

The response of the single- and double-step drive of the 
SLM is illustrated in Figure 6. The SLM consists of a seg-
mented mirror forming an array of square mirrors that are 
each actuated in piston mode as described earlier. Typical 

displacements are small, roughly half of the wavelength of 
the reflected wavefront. As a result, the correction to the 
linear response is small. The response time, however, needs 
to be as fast as possible. The device is operated in closed-
loop mode to correct the incoming wavefront dynamically. 
In principle, this could be used to correct for the dynamic 
behavior of the mirror; it is, however, significantly simpler 
to have a well-controlled mirror responding only to the 
dynamically shifting wavefronts. In this case, the 77.920 kHz 
segments have a quality factor of 6.3, which is limited by 
viscous drag. The best results for rapid settling were 
achieved with .t 11 1 s1 ��  for the double-step drive, corre-
sponding to an improvement of more than a factor of five. 
Under certain circumstances, it may be beneficial to operate 
the device in a vacuum. In this case, the quality factor, and 
hence single-step settling time, could rise by two orders of 
magnitude. The double-step setting time, however, would 
remain almost unchanged and would even improve from  
17 s�  to / . .t T 2 6 4 s1 0 �� �  In this application, the mirror 
speed requirements depend on the frame rate of the wave-
front detector. An 11 kHz refresh rate (time constant 91 µs) 
has been demonstrated; where a single-step driven device 

f0 = 80.029 kHz
Q = 6.3

� = 24 �s
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FIGURE 6 The drive and response of a spatial light modulator 
(SLM) element. (a) A single- and double-step drive with .t 6 6 s1 ��  
and . .F F0 591 0�  (The analytical solution presented predicts 

.t 6 3 s1 ��  and . .)F F0 561 0�  The actuation voltage input is normalized 
to one. (b) A single- (black) and double-step (red) response of an 
SLM element translated by 300 nm. The double-step drive sup-
presses the ringing amplitude below the detection threshold and 
reduces the settling time from over 100 µs to below 17 .s�  (Repro-
duced with permission from SPIE [27].)
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FIGURE 5 The response of a commercial microelectromechanical 
systems optical cross-connect mirror by CrossFiber. (a) A single-
step drive results in a settling time of almost 300�ms. The envelope 
of the ring-down is fitted to an exponential, obtaining /m2 51� �  ms 
or .Q 265�  The inset shows the oscillation over a shorter time 
interval. The observed beat results from a weaker 550-Hz mode. 
(b) A double-step drive (bidirectional) illustrates the same device 
settling in just 320� ,s�  an improvement by three orders of magni-
tude. The torsional resonant mode was measured using a fre-
quency sweep at / ( ),t1657 1 2Hz 1�  indicating an idealized system 
could settle in 302 ,s�  or only 6% faster than experimentally 
observed.
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would be limited by the mechanical settling time, using the 
double-step drive, the MEMS mechanics described here 
may allow for significant improvements.

ELECTROMAGNETIC ACTUATION:  
A THOUSAND-FOLD REDUCTION IN SETTLING  
TIME OF HIGH-Q MICROMIRROR DEVICES
Larger, heavier, and slower devices can be efficiently driven 
by magnetic fields. In contrast to the capacitive drive, elec-
tromagnetic actuation can generate larger forces, albeit at 
the cost of higher actuation power. These large devices may 
have long ring-down periods due to the significant amount 
of mechanical energy stored in the moving device, making 
them ideal for the double-step drive. The example pre-
sented here shows how multiple modes of the system can 
be actuated simultaneously. The resulting ring-down has 
multiple modes, each with differing frequencies and qual-
ity factors. During a step in the applied force, both get actu-
ated and hence a single double-step drive cannot suppress 
all ringing. However, when sufficiently spaced in fre-
quency, each mode can be tamed individually.

The torque M�  acting on a magnet of magnetization M  
in an electric field B,  is given by the cross product

 | | | ,M B | sinM R
nI

5
4 02

3

� ��
n

i� � � �  (11)

where the field is generated by Helmholtz coils of radius R  
through which the current I  flows. 0�  is the permeability 
of free space, n  the number of loops, and �  the angle 
between M  and .B  �denotes that the torque is perpen-
dicular to both magnetization and field vectors M  and .B  
For large amplitudes, the torque is not linear with regard to 
the actuation angle ( / ) ( / ) ).sin 6 1203 5 ��� � � �- + +  As 
the torque weakens with increasing angle, the current can 
be increased to compensate. As the magnetization aligns 
with the magnetic field, the torque vanishes tangentially as 
expected. No finite current can quasi-statically rotate the 
mirror beyond / .2i r�

Typical forces can be large compared to capacitive drive 
techniques, and the required voltages are much lower. The 
power consumption is high, however, since a current 
through the coils must be maintained at all times. Further-
more, the MEMS devices become heavy due to the magnets. 
Further limiting the response time is the high inductance of 
the drive circuit, slowing the rate at which the torque can be 
applied. For an inductance-limited circuit, the time constant 
is /L R� �  and the impedance scales as ;L�  as a result, 
large dynamic voltages are needed to change the torque at 
high rates.

The device considered is shown in Figure 2(c). �Finite-
Element Simulations of Resonant Modes� includes a 
description of the two modes mentioned previously, which 
couple to the torque applied to the magnet when a current 
flows through the coils. The magnetization is a property of 
a neodymium magnet attached to the backside of the silicon 

mirror. Adding the magnet to the MEMS increases the mass. 
Alternatively, coils can be added to the MEMS and the mag-
netic field can be generated externally [20], [58]. Keeping 
the coils off the MEMS simplifies the fabrication and 
removes the input power from the temperature-sensitive 
mechanical elements.

A simple step-function drive results in two harmon-
ics being actuated, labeled as mode a and mode b. Figure 7 
depicts the resulting ring-down, (a) and (b) in time domain 
and (c) in frequency domain. As each mode is actuated, a 
double-step drive is required for each mode, which means 
four parameters need to be determined , , , ,f Q f Qa a b b� �  
where high-precision measurements are favored over 
modeling, which is rarely sufficiently precise. If only a 
single double-step drive for the fundamental mode is 
applied, significant ringing in the higher-order mode is 
observed. The two modes are separated by almost a factor 
of four in frequency space. This makes the device an ideal 
candidate for two-fold double-step actuation. The high-
frequency mode can settle within each level of the double-
step drive used to suppress the ring down in mode .a  
Essentially, two point-to-point transitions are completed, 
each requiring a double-step drive. Given the large dif-
ference in period, ,t t��a b1 1  the double step for mode b  is 
implemented sufficiently quickly so that mode a  is oblivi-
ous to it. For  this approach to work, the higher-order fre-
quency must be at least double the fundamental-mode 
frequency. This condition results from the requirement for 
the higher-order mode to settle during the first step of the 
actuation of the fundamental mode. When using the feed-
forward filters to determine the input command, there is 
no restriction on the frequency spacing of the modes. As 
discussed in �Feedforward and Feedback Drive Filters,� 
the input command can be generated for a system with an 
arbitrary number of modes of any frequency sequence. 
The final settling time tTOT  will be the sum of the settling 
times of the individual modes ).(t t i1� �

Figure 7 shows the settling of both modes is on the 
order of 4 ms, considerably longer than the theoretical 
1.5�ms defined through the fundamental mode period of 
3.1 ms. The reason for this is the increased duration re-
sulting from the two double-step drive (adding 0.42 ms to 
the step duration) and the time constant of the inductive 
circuit. Acting as a low-pass filter, the magnetic coils lim-
it the rate at which the force can be modulated. The posi-
tioning time, defined as the duration until the ringing 
drops below the noise amplitude, is found to be 4200 
times faster for the two double-step drives than for the 
single-step drive. The efficient suppression is demon-
strated by the FFT plots in Figure 7(c). Strong peaks are 
shown at 319 Hz and 1177 Hz for the single-step drive, a 
single 1177-Hz peak for the double-step drive, and no 
peaks for the two double-step drives. Although at fre-
quencies approaching 105 Hz, additional features in the 
FFT spectrum are visible, these are too weak to cause any 
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measurable displacements. With quality factors of 3100 
and 260, the dissipation is negligible and, as expected, 

/F F 21 0�  for both modes. The feedforward filters, de-
scribed in detail in �Feedforward and Feedback Drive 
Filters,� is well suited to discover how to treat multimod-
al responses. Each mode requires its own filter (and 
transfer function). Simply multiplying the two filters (the 
formal way of applying both filters) produces the desired 

minimum time settling. Each filter has two terms, the 
multiplication of which results in four terms corresponding 
to the four transitions shown in Figure 8(b). The example 
shown here is a special case where only two modes need 
to be considered.

Figures 8 and 9 depict the forcing and position responses 
for four point-to-point transitions, two increasing and two 
decreasing in amplitude. Both single- and two double-step 

Finite-Element Simulations of Resonant Modes

The finite-element simulation program COMSOL was used 
to determine the mode shapes of the magnetically driven 

MEMS mirror depicted in Figure 2(b). The results are illustrated 
in Figure S2.

A single torsion device, like that used for the overdrive 
simulations depicted in Figure 12(a), has no other low-fre-

quency torsion modes. The next two higher modes related 
to a torque, or twisting, of the springs are depicted in Figure S3.  
These results demonstrate that the overdrive actuation 
scheme may be applicable to a purely torsional system, 
lacking asymmetries like those of the magnetically driven 
system described above.

FIGURE S2 The finite-element simulation of a dual-axis mirror with a magnet attached. Color indicates normalized displacement. 
(a) The fundamental torsional mode was found experimentally at 320 Hz. (b) The higher-order mode, also actuated by the exter-
nally applied torque, was found experimentally at 1179 Hz. This mode is the planar flexural mode, where the tilt results from the 
asymmetry caused by the magnet. These two modes couple when a step in the force is applied.
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transitions are considered. The effectiveness of the drive is 
truly impressive. In applying the two double-step forces, all 
four transitions are accomplished within 60 ms (with an exper-
imental minimum limit of ),4 4 16ms ms� �  whereas the 
single-step response continues to ring uninterrupted. Consid-
ering a mechanical settling time of over 16 s, controllably 
addressing all four setpoints would take over a minute. Again 
the FFT of the response is plotted to demonstrate the effective 
suppression of all resonant modes. The high-frequency sup-
pression in the FFT is discussed in detail below, where the 
effect of smoothed drive forces resulting in curbed higher-
order modes is illustrated.

While mechanical modes above 1177 Hz may exist for 
this system, they are not actuated because the coils act as a 
low-pass filter and do not allow for high-frequency actua-
tion. This can be exploited technologically because the 

response time is limited by the t1  of the fundamental mode 
and higher-order modes can be suppressed by simply inte-
grating a low-pass filter into the drive electronics. If the 
higher-order modes are too close in frequency for a low-
pass filter to not influence the fundamental mode, then the 
twofold double-step drive can be implemented. The system 
must be engineered to exclude higher-order modes too 
close in frequency to the fundamental mode. A simulation 
of a double-step torque for suppressing multiple resonant 
modes is presented in [59] for the intended application of 
reorienting spacecraft.

THERMOELECTRIC FORCING: GENERATING STRAIN 
GRADIENTS TO SHAPE AND ORIENT MIRRORS
There are two types of thermal drive schemes. In one, a 
temperature gradient is established where the resulting 
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differential change in length of the two elements results in 
a deformation [60]. In the second, a bimorph, typically a 
stack of silicon and gold, is heated. The resulting difference 
in thermal expansion results in a strain gradient across the 
structure, which then deforms mechanically. The bimorph 
can be characterized by its radius of curvature, which can 
both shape the surface of a mirror and be used to control its 
angle or height [15]. Considering the initial curvature 0�  
any change in temperature T�  will result in a change of 
curvature given by [61]

 ,r
t t t t E t

E t
E t
E t

t T1

4 6

6

Au Si Au Si
Si Si

Au Au

Au Au

Si Si
0

2 2
3 3l l a� �= = +

+ + + +� �
 (12)

where r  is the radius of curvature, ��  the difference 
between the thermal expansion coefficients of silicon and 
gold, ti  the thicknesses, and Ei  the Young�s moduli of both 
materials. The angle of the mirror is proportional to the 
curvature �  since ,Li l�  with L  the length of the bimorph. 
Not only dependent on the mechanics of the device, the 
dynamics are also governed by the rate at which the 
bimorphs can be heated and cooled. Assuming the mirror 

cools to air and thereby forms a heat sink [62], the thermal 
relaxation time th�  of the device is 

 ,
L C

th
th

p
2

2

x
r l

t
�  (13)

where , , ,L C andp tht l  are the effective length, density, heat 
capacity, and thermal conductivity of the bimorph, respec-
tively. The L2 scaling means that as the device size shrinks, the 
thermal timescale becomes very fast. Consequently, NEMS 
devices can be thermally driven at frequencies exceeding  
200 MHz [63]. Using effective parameters to account for the 
gold and silicon materials used in the bimorph, (12) results in 
a thermal time constant of . ,1 1 msth� �  in agreement with 
the thermal timescale measurements illustrated in �Ther-
mal Relaxation and Piezoresistivity.� Typically, a device is 
heated thermoelectrically while the cooling is passive. For a 
conductive bimorph, this means that heat can be generated 
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throughout the structure, where cooling is both through the 
surrounding air and into the base. Decreasing the thermal 
conductivity lowers the power consumption but also in -
creases the thermal relaxation time. For the double-step drive 
to work effectively, the device must limited by the mechanical, 
and not thermal, timescale.

The change in temperature results from an electrother-
mal drive, where Joule heating in the bimorphs equilibrates 
through thermal dissipation into the silicon substrate and 
the surrounding air. For small temperature changes, T�  is 
proportional to the applied power, which is itself a function 
of the square of the drive current (or voltage depending on 
how the device is biased)

 .P I R T R T
V2

2
� �� �� �  (14)

It must be noted that the resistance R(T) itself will rise with 
increasing temperature. For a current-biased drive, this 
results in additional heating and can lead to thermal run-
away and catastrophic failure. For a voltage-limited drive, 
there is an initial power peak, which then drops as the 
resistance rises with temperature. For this reason, a volt-
age-biased system will typically respond faster than one 
that is current biased.

The thermally driven MEMS device shown in Figure 2(c) 
consists of two gold-silicon bimorph actuators with a 
large mirror attached to their ends. Intrinsic strain from 
the fabrication process results in an elevated structure. 
Heating the device flattens the bimorphs and thus chang-
es the angle of the mirror, similar to previously reported 
optical MEMS microscanners [21], [64]. The single-axis 
device exhibits a large angular range, positioning a mirror 
with a ~1 mm2 surface area. Figure S4 shows that by ap-
plying a voltage bias while measuring the current, two 
thermal relaxation times can be observed. The first, relat-
ed to the thermal relaxation time for the device itself, is 
determined to be 0.95 ms, and a second, longer relaxation 
time, probably determined by the substrate-bimorph-
mirror system, is measured to be 39.5 ms. Furthermore, a 
mechanical ringing is observed: the thermal pulse causes 
the mirror to resonate. The modulation of the strain is ob-
served in the oscillating current resulting from the piezo-
resistive properties of the device (details are given in 
�Thermal Relaxation and Piezoresistivity�). In certain 
cases, this modulation works as a heat engine and can 
drive a MEMS device [65].

This ringing is also visible in the reflected light of a laser 
onto a PSD, as shown in Figure 10. The single-step response 

Thermal Relaxation and Piezoresistivity

Thermal relaxation measurements using a constant voltage 
bias are presented. Since the power is proportional to V 2/R 

and R(T) is a monotonically increasing function in the range con-
sidered, there is an initial power spike, or excess, before the sys-
tem finds its thermal equilibrium. This is illustrated by the mea-
surements shown in Figure S4. The overshoot of approximately 
10% shows an exponential decay to the equilibrium position gov-
erned by two thermal time constants. The shorter timescale of 
1.02 ms is given by the thermalization time of the bimorphs, while 
the longer timescale of 39.8 ms is the thermalization time of the 
whole system, including the large mirror, which acts as a heat 
sink, and the silicon base itself on which the MEMS device is 
situated. The oscillations visible in the thermal measurements 
shown in Figure S4 are the result of the piezoresistive response 
of the bimorphs, where the resistance is modulated by the me-
chanical strain, as described by (S21). For the thermal drive to be 
able to cause mechanical ringing, the thermal timescales must 
be faster than the mechanical timescale. Given a mechanical pe-
riod of 15.0 ms, the thermal timescale of just over 1 ms is suffi-
ciently fast for both resonant actuation as well as the double-step 
drive, which requires the duration of the first drive power to be 
7.5 ms, during which the system can find its thermal equilibrium.

A piezoresistive material exhibits a strain-sensitive resistiv-
ity described by

 ,R
R1 1 1�

P
s s

�
c f o f t

t= = + +� �  (S21)

where �  is the resistivity, v  is the Poisson�s ratio, and s�  is the 
mechanical strain. ,P�  known as the gauge factor, is a measure 
of the strength of the piezoresistive effect [65].

FIGURE S4 Thermal relaxation measurements. Measuring the 
current after a voltage step reveals that the thermal relaxation 
of the device is governed by two timescales, that of the 
bimorphs and that of the entire substrate-bimorph-mirror 
system. The observed ringing has the same period as the 
mechanical response and results from a strain dependency on 
the resistance (piezoresistivity).
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is again used to determine the electromecha nical coupling 
as well as the parameters f0  and .Q  The oscillations are 
accompanied by an additional slower relaxation, or drift, as 
is observed in the resistance. While the ringing can be sup-
pressed by the double-step drive, the drift [with a mechan-
ically measured timescale of 64 ms; see the orange trace in 
Figure 10(b)] must be mitigated using other methods. One 
possibility is an intentional thermal drive overshoot fol-
lowed by a slow relaxation to the desired final drive ampli-
tude. However, such drive sculpting is no longer described 
by linear drive theory, which is the focus of this article. 
While characterizing the device can lead to improved 
open-loop forcing, high accuracy in such devices is only 
achieved in a closed-loop mode. It should be noted that 
thermally overdriving the device produces an increase in 
the ringing. Consequently, even in a closed-loop setup, the 
double-step drive can minimize overshoot and simplify the 
feedback, because the resonant response has already been 
suppressed and only the much slower transient corrections 
are required. A plot of the drive power [Figure 10(a)]  
shows that applying just over half power for half the period 
( ( / ) . )t T1 2 7 5 ms1 0� �  effectively suppresses the resonant 
response. The much slower thermal relaxation time can be 
dealt with by intentionally overshooting the applied power 
and then smoothly ramping it back for the desired final 
position. Even in this highly nonlinear system, the theory 
predicts the correct values for t1  and P F1 1�  within 0.1% 
and 2%, respectively. It can be expected that for higher 
drive amplitudes, the nonlinearities will become increas-
ingly significant, resulting in a deviation from the simple 
theory given here. For ringing to occur at all, the thermal 
timescale must be significantly shorter than the period of 
the mechanical resonance being actuated; given a thermal 
timescale of just over 1 ms, this is certainly the case for the 
example presented here.

While thermal forces can be very large and usefully 
applied to MEMS devices, the power requirements are higher 
than for many other drive methods. While thermally driven 
MEMS are more efficient when operated in a vacuum, the 
thermal timescales will increase correspondingly. Another 
drawback of thermal actuation is the long-term stability of 
the system: elevated temperatures can cause material degra-
dation and fatigue. As an example, silicon and gold can form 
a silicide at only 350 °C, a temperature easily reached in 
MEMS systems, resulting in device failure.

LARGE-FORCE ACTUATION AND  
RESONANT DRIVE SCHEMES

Overdrive: High-Speed Opportunities  
and Limitations When F >> kx
Considering the maximal force Fm  that can be applied to a 
given system (typically the result of the maximal voltage or 
current available), it is possible to imagine a response time 
faster than that determined by the restoring force of the 

spring. Here two situations are considered. For overdrive a 
both an accelerating and decelerating maximal force 
( ,F Fandm m+ -  respectively) can be applied to the mirror. 
Fm  can greatly exceed F0  and is required to be greater or 
equal to / .F 20  As a second example, termed overdrive b, 
consider a system that only allows for an externally applied 
acceleration, and the mechanical spring provides the 
required restoring force to bring the device to rest. An 
example of such a system would be the thermal drive, the 
heating power can be turned on and off, but no active cool-
ing is applied. Again, the system is described by the maxi-
mal externally applied force .Fm�

Consider overdrive .a  In the dissipation-free limit, the 
acceleration of a MEMS device becomes [setting 0� �  in (3)]

 .x m
F

m
k xm= -�  (15)
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FIGURE 10 The electrothermal drive of a large-angle mirror. (a) 
Drive and (b) response for single- and double-step forcing, respec-
tively. The exponential decay and fit to the oscillation reveals a 
resonance at 66.76 Hz and corresponding quality factor of 13.97. 
The derived theoretical values for .t 7 495 ms1 �  and .P P0 5291 ��  
are within 0.1% and 2% of the best experimental values found, 
respectively. A thermal drift is characterized by two relaxation time 
constants: ,10 64ms and ms1 2� �� �  illustrated by fit (the orange 
trace) to the oscillation-free transient response.
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The general solution of the inhomogeneous differential 
equation can be expressed as

 .cos sinx k
F c m

k t c m
k t  m

1 2= + +  (16)

Remembering that the aim is to accelerate and then deceler-
ate the mirror with a maximal force of ,Fm�  how long to 
accelerate and then decelerate the device must be deter-
mine. For a system initially at rest at the origin, the position 
of the resonator during the acceleration phase becomes

 .cosx t k
F

m
k t1  aa

m= -� �� �  (17)

During deceleration the position is

 ,cos sinx t k
F c m

k t c m
k t  da

m
a a1 2= + +� �  (18)

where c a1  and c a2  are constants determined by the bound-
ary conditions. The time t a1  is defined to be the end of the 
acceleration and the time t a2  to be the time at which the 
deceleration is completed and the device is positioned at 
the target location and at rest. This imposes the following 
four boundary conditions, which are solved for the four 
unknowns

 ,x t x ta a d a1 1�� �� �  (19)

 ,dt
dx t

dt
dx ta a d a1 1�

� �� �
 (20)

 ,x t xd a2 0�� �  (21)

 ,dt
dx t 0d a2 �

� �
 (22)

from which all the remaining parameters can be calculated
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 (26)

Figure 11(a) shows the calculated values for t a1  and t a2  as a 
function of /F Fm0  as well as the expected amplitude 
response for a forcing of ten times the final equilibrium 
force [see Figure 11(b)]. It should be noted that in the limit 
as / ,F F 2m 0�  the overdrive solution converges to the dou-
ble-step solution where / ,t t T 2a a1 02� �  and no decelera-
tion force is applied (the duration during which the applied 
force is F t tis -m a a1 2�  and vanishes in the /F F 2m 0�  limit).

From a practical point of view, the applicability of the 
overdrive method is limited. Many MEMS devices cannot 
withstand maximal forces of an order of magnitude higher 
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FIGURE 11 Overdrive mode. (a) The duration of acceleration and 
deceleration as a function of / ,F Fm0  given a final resting position of 

/ .x F k0 0�  For overdrive a, both t a1  and t a2  vanish as the applied force 
diverges. For overdrive b, a minimum settling time of /T 40  is obtained 
for a divergent initial drive force .Fm  (b) A comparison of single-, dou-
ble-step, and overdrive a. Assuming a maximum applied force of 

,F10 0�  the settling time can be reduced to . ,T0 0987 0�  or almost five 
times faster than the double-step settling time. (c) An illustration of 
overdrive b. As the accelerating force increases, its duration shortens 
to allow for the mechanical spring to bring the device back to rest at the 
new position. Without an external deceleration force, a minimal set-
tling time of /T 40  can be reached. For both overdrive a and b the 
double-step drive is recovered as / .F F 2m 0�
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than the required steady-state forces they will experience. 
Since large angles are desired, technologically Fm  is often 
the same order as the full range of .F0  Also, short, high-
amplitude pulses result in driving forces acting at very 
high frequencies. Consequently, higher-order modes of the 
structure may be actuated; so even if no ringing at the fun-
damental frequency is observed, there may be significant 
higher-order modes actuated with long settling times. 
Nevertheless, there are some specific applications where an 
overdrive approach can be implemented. For example, 
short, narrow, but relatively thick torsion springs have a rea-
sonably low torsional spring constant. The fundamental tor-
sion mode is well separated in frequency space from the 
next-order torsion mode that can couple into an applied 
torque (see �Finite-Element Simulation of Resonant Modes�). 
Given that linear modes in the low dissipation limit do not 
couple, if the torque is applied effectively, only the desired 
resonance can be actuated.

The overdrive a  method is demonstrated for the single-
axis mirror using finite-element simulations, illustrated in 
Figure 12. In Figure 12(a), the fundamental torsion mode is 
reproduced, with colors indicating relative amplitudes at a 
resonant frequency of 3421 Hz; Figure 12(b) illustrates the 
amplitude response in the time domain for the single-, 
two-, and three-step drive schemes. As predicted, the dou-
ble-step scheme settles after / .t s T148 2a1 0���  Some 
ringing is still observed because the simulation is sensi-
tive to the discretization of time. Applying the overdrive 
with the torque 20m 0� ��  results in a settling time of 

. / . .t T20 5 14 3sa2 0�� �  In this case, the ringing is practi-
cally nonexistent. Considering the predictions given by 
(23) and the plots in Figure 11(a), the settling time is ex-
pected to be / . ,T 14 20  which is quite close to what is ob-
served, given that the theory is based on a point mass with 
a massless spring system while the finite-element simula-
tion takes the entire three-dimensional device into consid-
eration. The agreement between the theory and this 
simulation is based on two important factors. First, the 
torque applied is ideal, meaning there are no translational 
forces that can actuate modes orthogonal to the torsional 
mode. This is experimentally difficult to achieve since any 
misalignment of the drive force will increase coupling to 
modes orthogonal to the desired torsion mode. Second 
(and related to the prior point), the torsion mode is unique 
in that higher-order torsion modes that could be actuated 
by a pure torque are at very high frequencies. For the ge-
ometry considered here, the next-order torsion mode is at 
452 kHz, which is more than two orders of magnitude 
above the fundamental mode. Furthermore, only the 
springs participate in the motion, while the mirror plate at 
the center remains still; hence even if actuated, this is not a 
mode that can cause an unwanted beam deflection. The 
first higher-order mirror torsion mode was found to be at 
1.358 MHz, far too high to be actuated by the slow drive 
circuit considered here.

In the magnetic drive example illustrated above, the mag-
net on the device introduces an asymmetry. The rotational 
axis is not the center of mass and, when applying a torque to 
the magnet, there are components acting on multiple modes. 
This is illustrated by the peaks of the FFTs plotted in 
Figure 9(b), where the corresponding mode shapes are illus-
trated in �Finite-Element Simulations of Resonant Modes.� 
Even if the modes could be sufficiently isolated, there is still 
the difficulty of generating the required high torques. Consid-
ering the drive modality, the high currents needed to generate 

m�  cannot be applied continuously because the coils would 
overheat and melt. It may be possible to pulse the coils for t ,a a1 2  
of order /T 200  without catastrophic meltdown. Of course, if 
only very small, yet high-speed, amplitude corrections are 
needed, the requirements on Fm  are eased, and the overdrive 
actuation scheme becomes more widely applicable.

Although the derived analytical model presented here 
applies only to the vanishing dissipation limit, this is not a 
particularly severe constraint since MEMS device can often 
be operated in this limit. It should be noted that the dissipa-
tion is proportional to the velocity. Hence, even though the 
device moves quickly before settling, the correspondingly 
high speeds result in an energy loss equivalent to that of the 
double-step drive method.
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FIGURE 12 A simulation of a single-axis mirror. (a) The fundamen-
tal torsional mode appears at 3421 Hz. (b) Single- (blue), double-
step (red), and overdrive (green) actuation. The overdrive results 
in a settling time seven times faster than for double-step actuation 
and is completed after only . / . , .t T F F20 5 14 3 20s fora m2 0 0�� � �  
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Although the double-step drive provides a smooth point-
to-point transition, it is not optimized for time. The over-
drive a input shaping presents the minimal-time solution 
given a maximal bidirectional force. The minimal-time solu-
tion for single-sided forcing, overdrive b , can also be consid-
ered. Here, the aim is to accelerate the system to the largest 
possible velocity for which the spring of the MEMS can still 
provide sufficient restoring force to bring the device to a halt 
by the time it reaches the desired amplitude. Again, there 
will be a period of acceleration during which the force Fm�  
is applied, followed by a deceleration period during which 
the restoring force �kx(t) acts. The actuation profile of such a 
drive mechanism is illustrated in Figure 13(a). The resulting 
expression for the amplitude response of the acceleration 
phase is identical as for the overdrive a case [see (17)]

 .cosx t F
m
k tk 1ab

m= -� �� �  (27)

During the deceleration, the applied force is set to zero and 
hence

 .cos sinx t c m t c m tk k  db b b1 2= +� �  (28)

The boundary conditions are

 ,x t x ta b d b1 1�� �� �  (29)

 ,dt
dx t

dt
dx ta b d b1 1�

� �� �
 (30)

 ,x t xd b2 0�� �  (31)

 ,dt
dx t

0d b2 �
� �

 (32)

where t b1  is the duration of the acceleration force and t b2  is 
the settling time at which force F0  is applied. All the 
remaining parameters can be calculated from (29)�(32);
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 .cosc T
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0
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Figure 11(a) shows the calculated values for t b1  and t b2  as a 
function of / .F Fm0  As Fm  diverges, the duration of the 
acceleration vanishes. The velocity reached essentially 
instantaneously will be subsequently decreased due to the 
breaking force of the spring until the desired amplitude x0  
is reached at time / ,t T 4b 02 �  which is the minimal settling 
time of a resonator with unidirectional forcing. For F Fm 0�  
the settling time reaches / .T 30  Just as before, in the 

/F F 2m 0�  limit, the overdrive solution converges to the 
double-step solution where / .t t T 2aa1 2 0� �  The corre-
sponding amplitude curves are plotted in Figure 11(c).

While only the analytical solution is presented here, studies 
on capacitive-comb drive MEMS [31] compare the responses of 
single-step, overdrive b command sculpting (feedforward), 
and closed loop (feedback). Although the closed loop (feed-
back) improves the single-step rise time from 190 s�  to 170 ,s�  
it falls short of the overdrive (preshaped) response time of 
100 .s�  The actual settling-time improvement of the feedfor-
ward and closed-loop drive schemes are roughly three times 
faster than standard open-loop drive. The observed timescales 
are in agreement with the overdrive b scheme using .F F20m 0�  
The closed-loop response time, in this case, was limited by the 
sampling rate.

The functions obtained for the overdrive actuation 
schemes can be used to determine the feedforward input 
filters used in command theory. The results are discussed 
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F F10m 0�  to / .F F 2m 0�  (b) A Fourier transform of overdrive b 
drive force. As is the case for overdrive a, the resonant mode can 
be suppressed. The shorter time pulses for increased Fm  result in 
higher actuation forces at higher frequencies.
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in �Feedforward and Feedback Drive Filters� and are used 
to corroborate the discussion on sensitivity given below.

Resonant Drive Schemes
So far, only various sets of step functions have been pre-
sented for driving the resonator. There are other drive 
modalities that may be considered. Instead of generating 
a large overshoot that rings down to a new equilibrium as 
described above, a mode driven harmonically (possibly 
on resonance) will steadily gain amplitude until the dis-
sipation prevents a further increase. A sinusoidal drive is 
proposed in [66] for vibration-free point-to-point transi-
tion. Consider a drive force that results in a local maxi-
mum being reached at the desired amplitude. At the apex, 
the resonator is at rest; hence, if at that moment the forc-
ing is switched from harmonic to a constant, the restoring 
force is balanced and the position can be maintained. The 
drive force and the resulting displacements for this sce-
nario are plotted in Figure 14(a) and (b), respectively. In 
one case, the steady state is reached at the first maximum 
(or second root of the velocity), and in the other case the 
desired amplitude is reached only at the third maximum 
(or sixth root of the velocity). The higher the forcing, the 
more rapidly the amplitude is generated. Just as for the 
double-step drive scheme, the dissipation and resonance 
frequency will define the required experimental parame-
ters. In the example presented here, given a dissipation  
of . ,0 4��  the first maximum is reached at 0.78 ,T0  not 
much longer than the settling time of the double-step 
drive. However, the required forcing is approximately 

.F3 0  Or, if the speed of response is less essential, a reso-
nant drive of . F0 9 0  will reach the steady-state amplitude 
of / . .F k t T2 78by0 0�

At first glance, it may appear that the resonant drive will 
selectively actuate only a specific frequency and is hence 
desirable over the indiscriminate double-step drive that 
can actuate other modes. However, given that the resonant 
drive is always concluded by a step to the final drive force, 
there will, by necessity, be significant contributions to the 
forcing at all frequencies. As depicted in Figure 14(c), the 
resulting FFT of the actuation forces considered shows 
drive amplitudes in frequency space equivalent to that of 
the single-step function. One special exception would be if 
the amplitude, when driven on resonance with the drive 
force F0 , reaches an apex amplitude of / .F k0  In this case, 
the step function can become arbitrarily small and the 
higher-order frequency contributions are weaker. Although 
such a system may be constructed, it is unlikely to be of any 
practical value since only specific parameters over a narrow 
range can fulfill this condition.

STABILITY OF THE DOUBLE-STEP  
AND OVERDRIVE ACTUATION SCHEMES
For double-step input sculpting to work effectively, the 
device parameters must be known precisely. For the linear 

systems described in this article, there are only two param-
eters: the resonance frequency and the dissipation. It is 
assumed that the electromechanical transfer function is 
known precisely, that is, any position can be reached with 
arbitrary precision. Theoretically, these parameters can be 
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FIGURE 14 A resonant drive actuation. (a) The resonant ring-up 
followed by constant forcing for two resonant drive durations. nx 
refers to the number of zero crossings the resonator performs 
before it is held in place. (b) The displacement response for the 
two resonant drive actuation forces depicted in (a). (c) Fourier 
transforms of the drive force. A longer resonant drive results in 
narrowing features in the frequency domain. Each drive is com-
pleted by a step function; consequently, all frequencies are 
addressed in addition to the brief resonant drive. For six times 
resonant driving, the ring-up amplitude is close to the final 
amplitude where the constant forcing is applied. Consequently, 
the amplitude of the step is small and the higher frequencies 
are suppressed compared to the single-step or two times reso-
nant drive.
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calculated analytically or numerically; in practice, as is the 
case for all examples discussed here, the resonances fi  
and quality factors Qi  are determined experimentally. Two 
approaches can be used: either a frequency sweep fitted to 
the Lorentzian curve or a step force can be applied, the 
ring-down recorded, and fitted to (5).

In this section, the sensitivity of the double-step drive to 
detuning, or errors, on the system parameters is considered. 
Such errors can arise due to imperfect characterization or as 
a result of changes in the MEMS devices. Although reso-
nance frequencies can easily be measured to 1 ppm, thermal 

fluctuation and aging effects will cause the resonance fre-
quency to drift. For example, a device may be expected to 
function over a 100 ”C temperature range, over which a sili-
con device is expected to exhibit a frequency shift of about 
1% [67]. Therefore careful design and material choice are 
needed to significantly reduce the thermal sensitivity of 
MEMS devices [68]. More significant changes due to envi-
ronmental effects, such as changes in humidity, are typi-
cally avoided by using hermetic packaging.

The stability of the double-step drive is illustrated by 
introducing errors in the time ,t1  force ,F1  and the precision 
of the input sculpting, where the error is introduced 
through smoothing the Heaviside function. Errors in t1  not 
only encompass experimental limits but are also equiva-
lent to errors or drift in the resonance frequency. Errors in 
F1  may be attributed to changes in the quality factor or 
changes in the electromechanical coupling. Smoothing of 
the input command can result from imperfect drive elec-
tronics (finite ramp rate of a voltage source) as well as limit-
ing timescales due to the device itself resulting from its 
electrical and/or thermal load.

Many MEMS devices can be operated in the high-Q 
limit where dissipative effects can be completely 
neglected, in which case only the frequency and electro-
mechanical coupling need to be known. In practice, a 
device could be envisioned where these two parameters 
are determined during self-calibration when the device is 
turned on. In a larger system, individual elements of an 
array of optical cross-connect mirrors could be periodi-
cally recalibrated, while maintaining operational conti-
nuity of the system.

Effects of Errors in Amplitude and Time
Figure 15(a) depicts the response error, measured by the 
overshoot normalized to the desired setpoint. The detun-
ing variables tERR and FERR describe the deviation from the 
optimal values, t c1  and ,F c1  where no ringing or overshoot 
occurs. Hence, the double-step drive is characterized by 
t t tc1 1 ERR= +  and F F Fc1 1 ERR= + . The sensitivity to tERR and 
FERR is studied using the same finite-element simulation as 
was used to demonstrate the overdrive a minimum set-
tling-time actuation discussed in the previous section. In 
Figure 15, (b) and (c) show the amplitude response with 
respect to detuning t1  and ,F1  respectively. The overshoot 
in Figure 15(a) is determined from the maximum value of 
these simulations. The trend shows that for maximal 
detuning ( / / ) ,t T F F2 2and0 0ERR ERR� �� �  the overshoot is 
the same as the setpoint amplitude, and, per definition, the 
overshoot vanishes for .t F0 0andERR ERR� �  The red and 
blue solid traces in Figure 15(a) result from plotting the 
amplitude of the Fourier transformation of the forcing 
term, normalized to the expected detuning at the extremes. 
The overshoot follows

 ,sinx
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FIGURE 15 Overshoot resulting from drive errors. (a) Overshoot as 
a function of timing and forcing errors obtained from finite-element 
simulations (empty points), experiments of microelectromechani-
cal system (MEMS) optical switches (solid diamonds), and analytic 
solutions based on Fourier transforms of the drive traces. (b) and 
(c) Amplitude response of simulated MEMS with varying detuning 
parameters (even increments) in time and force, respectively. The 
overshoot in (a) is extracted from these plots.
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This means that a 1% error in time (or frequency) results in 
a 3.1% overshoot; correspondingly a 1% error in forcing 
results in a 2% overshoot. The solid diamonds in Figure 15(a) 
depict overshoot data for the capacitive cross-connect mir-
rors with regards to errors in timing. The trend matches the 
simulated and theoretical values; the difference could be 
explained by detuning of other parameters not associated 
with time.

The analogous finite-element simulations and the Fou-
rier transformations of the overdrive a and b  actuation 
functions reveal, not surprisingly, a much stronger sensi-
tivity to timing errors. It can be shown that in the high 
forcing limit ( )F Fm 0�  errors in t ,a b1  result in an over-
shoot of the form / ( / ) ( / )x x t F F t T4o m 0 0ERR ERR ERR��� �  and 

/ ( / ) ( / ,)x x t F F t T2o m 0 0ERR ERR ERR��� �  respectively. (�Feed-
forward and Feedback Drive Filters� describes how the 
same results can be obtained using Laplace transforms.) 
This instability sets the limits on the overdrive actuation 
method. Consider overdrive b and .F F20m 0�  A 1% error in 
time results in a 126% overshoot, and to limit the overshoot 
to 5%, the timing must be accurate to within 0.04% of the 
period of the resonator. Though surely not trivial, this has 
been successfully demonstrated in MEMS [31] where a 
timing accuracy of 200 ns is required. The resonant drive 
scheme should be expected to be highly sensitive to the 
experimental parameters; a high-Q device can no longer be 
actuated if the detuning in frequency is a considerable frac-
tion of / .f f Q0� �  Consequently, the acceptable uncer-
tainty can quickly reach experimental limits, and any 
environmentally induced drifts would prove fatal to the 
approach. Stability, or robustness, to parameter changes of 
the system, can be improved arbitrarily by adding addi-
tional input commands [41], [69]. Zero vibration (ZV), 
equivalent to the double-step drive has been expanded to 
higher-order ZV and derivative drive modes and beyond 
[43]. While such approaches allow parameter changes of 
over 30% while still maintaining overshoots beneath 5%, it 
comes at a price; each additional command results in a 
delayed settling time. Whereas systems such as cranes 
need to account for large changes in mass, MEMS parame-
ters are typically bound within a few percent of specs. 
Hence, the added stability of higher-order feedforward 
terms is not required and the loss in response time becomes 
unjustified. Higher-order presculpting of the overdrive b 
actuation scheme in MEMS did not lead to significant 
improvements in the settling times [31].

Compared to well-tuned feedforward drive schemes, 
closed-loop systems such as PID controllers cannot improve 
the settling time of well-characterized and stable MEMS 
devices. Feedback systems, however, are efficient in elimi-
nating external disturbances, such as vibrations or drifts 
caused by environmental factors. To achieve the highest 

levels of stability, a closed-loop system will always fare 
best. Feedforward drive sculpting can be combined with 
stabilizing feedback loops when both low response times 
or high stability/accuracy is required.

The Effects of Imperfect Drive  
Sculpting: Smooth Forcing
In all examples presented so far, it was assumed that the 
applied double-step force was ideal. This means that there 
is an infinitely sharp set of steps. The overdrive can be 
constructed from three step functions within very short 
intervals, occurring at , ,t t t0 s 1� �  and finally at .t t2�  
For any physical system, especially for electric drive 
schemes with long time constants, the approximation of a 
perfect step function may not be applicable. The stability 
and effect of forcing errors is discussed in [70]. To under-
stand both how the multistep drive works and the effect of 
nonidealized steps, the Fourier transform of the drive force 
can be calculated. This calculation reveals the level of forc-
ing as a function of frequency and is shown in Figure 16, 
where both the time and frequency domain of the single-, 
double-step, and overdrive forcing are plotted. (The ana-
lytical expressions of the Fourier transforms plotted are 
included in �Drive Force in Frequency Domain�). In addi-
tion to the idealized steps, rounded steps are included by 
replacing the step functions with hyperbolic tangents, rep-
resentative of smooth, more realistic changes in the applied 
force. The amplitude of the Fourier transform of the step 
function has a simple analytic solution, falling off linearly 
without any features when plotted on a log-log curve. Con-
sequently, all modes are actuated, although the higher-
frequency ones experience lower drive forces, as would be 
expected. The amplitude of the Fourier transform of the 
double-step drive differs in an important way: superim-
posed over the linear falloff toward higher frequencies, 
there are periodic drops to vanishing forces at f0  and 
higher harmonics. The double-step drive does not actuate 
the resonant mode because there is simply no force contri-
bution at that frequency. If a system had higher-order 
modes of the form nf0  for odd n, these would also not be 
actuated. This also implies that very high-frequency modes 
can be suppressed using low-speed double-step forcing as 
long as / ( ).t nf11 0�

It is interesting to note the effect of smoothing the tran-
sition. As previously stated, replacing the step with a 
smooth transition is the equivalent of adding a low-pass 
filter to the drive circuit. Consequently, the high-frequency 
contributions are suppressed. The duration of the transi-
tion defines the maximal contributing frequency. For the 
examples plotted in Figure 16, it was assumed that the step 
took approximately . T0 2 0  to complete. This results in an 
FFT with a sharp drop above roughly / .T f2 20 0�  The FFTs 
of the single- and double-step drive modes both have the 
same underlying structure, with the only difference being 
the periodically vanishing contributions at nf0  for all odd .n   
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Given the efficacy of the double-step drive, even with 
smoothed actuation amplitudes, it is possible to suppress 
higher-order modes using a low-pass filter with a band-
width up to .f2 0  Experimentally, the falloff in the spectrum 
is visible in Figure 9 for the magnetic drive example. In that 

example, the drive coils act as a low-pass filter and effec-
tively suppress signals above ~0.5 kHz.

For the overdrive methods, this smoothing is not so 
simple. The short time intervals of t1  and t2  required when 
F F��m 0  prohibit the presence of a low-pass filters. The FFT 
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of the overdrive forcing plotted in Figure 16 also exhibits a 
dip at ,f0  which was required to suppress on-resonance 
driving. However, unlike the double-step drive, the ampli-
tudes at high frequencies also remain large. The three step 
functions defining the overdrive a produce three contribu-
tions to the / f1  spectrum. Furthermore, the amplitude 
scales with the step height, resulting in a larger prefactor to 
the / f1  dependency. Given that the time intervals are on 
the order of ten times faster, the resulting drive amplitudes 
are also still high at ten times the frequency. Even for the 
smoothed forcing scheme, the higher requirements on the 
response speed push the high-frequency drop off to over 

.f50 0  For comparison, Figure 13(a) shows the overdrive b  
forcing traces and Figure 13(b) shows the corresponding 
Fourier transforms. Analogous to overdrive ,a  the shaped 
drives in frequency space have a vanishing contribution at 
f f0�  (and odd harmonics). As the overdrive amplitude 

increases, the drive approaches a delta function and the 
drive amplitude becomes flat in frequency space, and all 
frequencies but f0  are actuated.

All ringing can be suppressed by ramping the drive 
force with a controlled slope, effectively placing a low-pass 
filter with a cutoff below .f0  While this may be the simplest 
method technologically, the fastest possible ramp without 
ringing will settle a MEMS device on the order of ,T10 0  or 
20 times slower than the ideal double-step drive.

CONCLUSIONS
It has been demonstrated analytically and experimentally 
that applying well-timed drive steps at the correct amplitude 

can completely eliminate the ringing of a damped (or un-
damped) resonator system. The simple point mass and spring 
model is shown to be directly applicable to complex MEMS 
devices. A three-order-of-magnitude reduction in the set-
tling time for both capacitively and magnetically actuated 
mirrors is demonstrated experimentally. In a thermally driv-
en system, the periodic transient deflections can also be ef-
fectively suppressed, for which case drift behavior, resulting 
from long thermal relaxation times, dominates the settling 
time. These significant enhancements in performance are 
achieved without the need for self-sensing and closed-loop 
drive schemes. These techniques are presented as a method 
to tame high quality-factor devices, simplifying the control 
electronics. The results demonstrate that an open-loop sys-
tem can perform point-to-point transitions at extremely high 
rates. Applications such as mechanically controlled optical 
switches will benefit considerably from implementing such 
drive modalities. Demonstrated by finite-element simula-
tions, it is suggested that properly engineered devices can be 
driven by high acceleration and deceleration forces, resulting 
in settling times an additional order of magnitude shorter 
than that what has already been achieved using the double-
step drive. It is believed that if such a drive modality were 
implemented in an actual device, its response would outper-
form active feedback circuits with the same maximal actua-
tion force available.

The rapid point-to-point settling time relaxes some of the 
design constraints on MEMS devices. Consequently, the 
devices can be larger, resulting in enhanced optical charac-
teristics, and the springs providing the restoring forces can 

Drive Force in Frequency Domain 

The following presents the analytical Fourier transforms of 
the drive signals for the single-step, double-step, and over-

drive forcing plotted in Figures 13 and 14. The Fourier trans-
form of a single-step drive is
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where f�� �  is the delta function. The corresponding magni-
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As described, the amplitude scales with the drive force and 
falls off as 1/f as a function of frequency, suppressing higher-
order mode actuation. The Fourier transform of double-step 
drive is
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and the corresponding magnitude for f > 0 Hz is
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For the double-step drive, in addition to the 1/f fall off, there 
is a cosine modulation, ensuring that the drive vanishes as 

/cos f2 0� �� �  or for f nT0� , for all odd n. The Fourier trans-
form of overdrive is
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There is no analytical solution for the corresponding magni-
tude. The Fourier transform of overdrive with no externally ap-
plied deceleration is
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with no analytical solution for the corresponding magnitude.
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be softer, thereby allowing far greater angular range. As an 
example, consider extremely soft springs made of soft poly-
mers to rotate a mirror over a large angle [71] and still 
achieve a useful response time. The effective cancellation of 
ringing could also be used for sensing. If an external pertur-
bation shifts the resonant frequency (for example by adding 
mass), then the preprogrammed double-step drive would 
result in ringing, revealing the perturbation.

Given the proliferation of MEMS devices, it is believed 
that the more comprehensive adoption of the feedforward 
command shaping will significantly enhance performance 
and enable new designs previously considered to be 
impractical. MEMS devices are fabricated commercially to 
high tolerances, and the mechanical properties do not vary 
significantly during the lifetime of the devices. Hence, 
feedforward in general, and the double-step drive in par-
ticular, provides an opportunity to significantly reduce the 
settling time without the need of complex closed-loop drive 
schemes. Faced with a challenging set of specifications, the 
MEMS engineer can use these techniques to open up the 
design space and explore a more advantageous balance 
between size, performance, and speed.
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