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Ion beam figuring provides a highly deterministic method for the final pre- 
cision figuring of optical components with advantages over conventional 
methods. The ion-figuring process involves bombarding a component with a 
stable beam of accelerated particles, which selectively removes material 
from the surface. The specific figure corrections are achieved by rastering the 
fixed-current beam across the workpiece at varying velocities. Unlike con- 
ventional methods, ion figuring is a noncontact technique that avoids such 
problems inherent in traditional fabrication processes as edge roll-off effects, 
tool wear, and force loading of the work piece. Other researchers have dem- 
onstrated that ion beam figuring is effective for correcting of large optical 
components. This work is directed toward the development of the precision 
ion-machining system (PIMS) at NASA's Marshall Space Flight Center 
(MSFC). This system is designed for processing small (~ 10 cm diameter) 
optical components. The ion-figuring process involves obtaining an inter- 
ferometric error map of the surface, choosing a raster pattern for the beam, 
and determining the velocities along that path. Because the material re- 
moved is the convolution of the fixed ion beam removal and the rastering 
velocity as a function of position, determining the appropriate velocities from 
the desired removal map and the known ion beam profile is a deconvolution 
process. A unique method of performing this deconvolution was developed 
for the project, which is also applicable to other mathematically similar pro- 
cesses, including computer-controlled polishing. This paper presents the de- 
convolution algorithm, a comparison of this technique with other methods, 
and a simulation analysis. Future research will implement this procedure at 
MSFC. 
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Introduction 

The figuring step in the fabrication of an optical 
component involves imparting a specified contour 
onto the surface. This can be expensive and time 
consuming. The recent development of ion beam 
figuring provides a method for performing the fig- 
uring process that has advantages over standard 
mechanical methods. Ion figuring has proved to be 
effective in figuring large optical components. 1-7 

Address reprint requests to T. G. Bifano, Aerospace & Mechan- 
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The process of ion beam figuring removes ma- 
terial by transferring kinetic energy from impinging 
neutral particles. The process utilizes a Kaufman- 
type ion source, where a plasma is generated in a 
discharge chamber by controlled electric poten- 
tials. 8 Charged grids extract and accelerate ions 
from the chamber. The accelerated ions form a di- 
rectional beam. A neutralizer outside the accelera- 
tor grids supplies electrons to the positive ion 
beam. It is necessary to neutralize the beam to pre- 
vent charging workpieces and to avoid bending the 
beam with extraneous electromagnetic fields. 
When the directed beam strikes the workpiece, ma- 
terial sputters in a predicable manner. The amount 
and distribution of material sputtered is a function 
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of the energy of the beam, material of the compo- 
nent, distance from the workpiece, and angle of 
incidence of the beam. The figuring method de- 
scribed here assumes a constant beam removal, so 
that the process can be represented by a convolu- 
tion operation. A fixed beam energy maintains a 
constant sputtering rate. This temporal ly and spa- 
tially stable beam is held perpendicular to the 
workpiece at a fixed distance. Correction would 
have to be made for nontemporal ly or spatially 
constant removal to model the process by a con- 
volution operation. Specific figures (contours) are 
achieved by rastering the beam over the workpiece 
at varying velocities. 

Prior to any machining, a beam function must 
be determined for the system. The beam function, 
analogous to a point spread function, provides a 
depth removal rate as a function of radial distance 
from the beam center. The ion-figuring process be- 
gins with interferometrically measuring the con- 
tour on the workpiece, resulting in an x-y array 
map of relative surface height values. A removal 
map, the difference between the measured surface 
contour and a desired surface contour, describes 
the material to be removed. From the removal map 
and the beam function, a dwell function or map is 
calculated. The dwell function provides velocities 
used by a targeting program to control beam mo- 
tions. For figuring, the component is placed in the 
machining apparatus, and the beam is rastered 
over the surface according to the dwell function. 
The material removed is represented by the convo- 
lution of the beam function and the dwell function. 
In NASA-MSFC's precision ion-machining system, 
the ion beam is held fixed and the workpiece is 
moved under the beam using x, y, and e, motion, 
but for purposes of discussion we refer to moving 
the beam across the workpiece; this involves a sim- 
ple change in the frame of reference. 

Early work on the ion-figuring, of optical com- 
ponents was performed by Gale. = This work was 
expanded at the University of New Mexico by Wil- 
son et al. 5-7 Their initial experiments involved fig- 
uring of 30-cm fused silica, Zerodur, and copper 
optics with a 2.54-cm ion beam source. Allen et al. 
developed an ion-figuring system for large optics 
at Eastman Kodak. 1-4 The Kodak Ion-Figuring Sys- 
tem (IFS) is capable of processing components up 
to 2.5 m x 2.5 m using several ion sources of up to 
15-cm diameter. Other current research is being 
carried out at Oak Ridge National Laboratory. Their 
system is capable of f iguring up to a 60-cm com- 
ponent. ~° The new PIMS research facility at NASA's 
Marshall Space Flight Center is focused on the fig- 
uring of small (~10-cm diameter) optics using a 
3-cm ion source. Figuring smaller optics is difficult 
because the ratio of the beam width to the size of 
the component is greater. The algorithm presented 
in this paper was developed primarily to overcome 
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some of the problems associated with the ion fig- 
uring process. 

The two main advantages of the ion-machining 
process are that it is noncontacting and highly pre- 
dictable. The noncontact nature el iminates the 
problems of tool wear and edge effects encoun- 
tered in most standard polishing techniques. The 
process also avoids rib structure print through and 
warping caused by loading stresses on the work- 
piece. Holding beam parameters constant ensures 
beam stability and results in a predictable and 
highly deterministic removal process. This allows 
for rapid convergence of the process to required 
specifications, resulting in a significant time and 
cost savings. The addition of in-process metrology 
can increase the effectiveness and is possible be- 
cause the method is noncontact, and an occluding 
machining tool is not present. It is also possible to 
combine the figuring with a coating process in the 
same vacuum chamber; better coating adhesion is 
expected from the clean surface left from ion ma- 
chining. With a broad ion beam removal and the 
smoothing nature of a convolution, only smooth 
continuous contours can be imparted on the sur- 
face with this technique. This constraint is accept- 
able for producing most optics. 

Issues of concern in ion beam-figuring process 
include; beam stability, the surface properties of 
the workpiece, workpiece heating, and dwell func- 
tion computation. Beam stability affects the pre- 
dictability and accuracy of the removal process, 
while workpiece surface properties and heating in- 
fluence the effectiveness of the process. The effects 
on the surface roughness are reported in earlier 
work. 11 

A significant step in the process is the calcula- 
tion of the dwell function that controls the rastering 
velocity. Because the ion beam-figuring process is 
a convolution process, the calculation of the dwell 
function is a deconvolution process. Difficulties in 
performing the deconvolution are accentuated in 
the processing of smaller optics because the scale 
of the workpiece is closer to the width of the ion 
beam (i.e., the computations involve a wider filter). 
A solution method for this problem is developed 
and discussed in the next section. The calculation 
of rastering velocities (dwell function) is indepen- 
dent of the x-y plane geometry of the workpiece. 
The algorithm requires information only on the ac- 
tual surface geometry. 

Algorithm 
Figuring process 

In the figuring process, the ion beam moves across 
the optical component. The parameters controll ing 
the ion beam current are maintained constant and 
the beam source is held a fixed distance, perpen- 
dicular to the workpiece. Because the beam re- 
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moves material over a broad area, the removal pro- 
cess is a convolution of the ion beam's removal 
profile (the beam function) and the rastering veloc- 
ity as a function of position (the dwell function). 
Determining the appropriate rastering velocities 
from the desired removal map and the known ion 
beam removal profile is therefore a deconvolution 
process. The actual f iguring is done by one of two 
methods: 1) varying the speed of the ion beam as it 
is moved across the component; or 2) placing the 
beam at grid points for various periods of time. The 
PIMS rasters in concentric circles around the work- 
piece center. The velocity is then varied throughout 
each circular path to provide nonaxially symmetric 
corrections. 

Prior to machining, the ion beam removal func- 
tion must be characterized. The beam function is 
analogous to the filter or point spread function of 
the machining process. The function gives a re- 
moval rate at a point and has dimensions of length 
divided by time. The beam function is characterized 
by its shape and its intensity. The shape remains 
constant for a specific physical configuration of the 
apparatus and need only be determined once for 
that configuration. The beam function is roughly 
Gaussian shaped, as depicted in Figure I. The in- 
tensity is dependent on the power supplied and the 
workpiece material, and it must be determined for 
each material. 

The first step in a specific machining process is 
determining the desired removal map for the pro- 
cess. This corresponds to a map of the corrections 
necessary to the surface, and it is computed by 
subtracting the desired contour from the measured 
surface map provided by the metrology. 

Prob lem fo rmu la t i on  

The figuring process is represented in Equation (1) 
as a convolution where the asterisk represents the 
convolution operator. The convolution equation is 
used to represent many different processes, and is 
shown here with ion figuring variables. 

1oo  
nm/min 50 40 

2 

- 2 0  

0 . . . .  

2 0  

4 -40 

Figure 1 Gaussian modeled machining profile of 
3-cm ion source 

R(x,y) = f :  f :  B(x - u,y - v) T(u,v) du dv 

= B(x,y)*T(x,y) (1) 

The beam function B is a measure of the depth of 
material removed per unit time at a location rela- 
tive to the beam center. The dwell function T rep- 
resents the rastering velocity of a strip per unit 
width or the time the beam spends at a location on 
the workpiece per unit area. The convolution of the 
beam function and the dwell function is a surface of 
material removed from the workpiece R, the re- 
moval function. The properties of the functions are 
outlined in Table 1. 

A dimensional representation of Equation(I) is 
shown in Equation (2) for clarity. 

This equation demonstrates that the dwell function 
has the units of t ime over length squared. The 
dwell function can now either be broken into areas 
and interpreted as a time, or it can be broken into 
strips and interpreted as a velocity. If the work 
space is broken into areas, each area has a time 
associated with it. This is the amount of time the 
beam must be positioned in that area and is equal 
to the integral of the dwell function over the area. 
For example, if the total workspace is broken into a 
square grid, the beam is centered at each square an 
amount of time approximately equal to the value of 
the dwell function at the center times the area of 
the square. 

dwell time at i,j = _f __lA~, T(X, y) dx dy 

T(ui, vj) Au ~v (3) 

This method discretizes Equation (1). 

R(x,y) = ~ ~ B(x - u,>y - vi) m(ui, v i) &u &v 
i=0 i=0 (4) 

The optical component 's surface profile and 
therefore the removal functions are provided as an 
x -y  grid array from the metrology equipment. This 
discretization of the removal function suggests dis- 
cretizing the figuring process in the same manner 
because the process is then exactly a square dis- 

Table 1 Function definitions and properties 

Definition Symbol Dim Units 

Removal function R [L] nm 
Beam function B [L/T] nm/s 
Dwell function T [T/L 2] s/mm 2 
Surface units x, y, u, v [L] mm 
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crete convolution. The calculations, then, maintain 
the same discretization as the metrology equip- 
ment. During figuring, the rastering pattern either 
must be constrained to the discretization of the me- 
trology or approximated from this grid. 

Alternatively, the workspace is broken in strips, 
where each strip has a width and a velocity func- 
tion associated with it. The velocity function is the 
speed that the beam is rastered along the strip, and 
it is equal to the inverse to the inverse of the dwell 
function integrated over the strip width. 

1 
V(x,y) - (5) 

s T(x,y) ds 

For example, the figuring process in Equation (1) 
wi th partial Cartesian discretization is approxi- 
mated as follows. 

R(x,y) = ~,~ ~-I= B(x - u,y - vi) T(u, vi) du &v 
/=0 (6) 

Each one-dimensional strip has a characteristic 
width. For example, if the workspace is broken into 
strips parallel to the x-axis, the width is the y sep- 
aration between the boundaries of the strips. 

1 
V(x) -= (7) 

T(x, yi) by  

The PIMS uses polar coordinates and forms strips 
with concentric circles, each having a characteristic 
width of z~r. The tangential velocity is used here. 

1 
V(0) ~ (8) 

T(ri, e) &r 

Another method considers a spiral strip from the 
center of the workpiece. This provides one strip to 
cover the entire piece. This has not been done be- 
cause of the difficulties in coordinating the transla- 
tional and rotational axes. 

The str ip-velocity method provides a partial 
discretization that has some advantages over the 
area-time method, and it is a more eloquent oper- 
ation. It is common in the area-t ime method that 
the beam remains on while the beam transverses 
from one grid point to another. This causes un- 
wanted removal if the positioning time is not neg- 
ligible compared to the dwell t ime in an area. In the 
Cartesian strip-velocity method, the rastering func- 
tion is continuous and strip positioning is done off 
the workpiece so that there is no extraneous mate- 
rial removal. Another advantage is that one level of 
discretization has been removed since the solution 
is not based on the discretization of the metrology. 
Although the translating motion may have its own 
inherent discretization, this discretization is usually 
smaller than that of the metrology, and it is possi- 
ble to control the velocity or acceleration to attain a 
higher order of accuracy. 
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H is to r i ca l  m e t h o d s  

Early work by Wilson et al. at the University of New 
Mexico on the figuring of optical components uses 
Fourier transform techniques to solve for a dwell 
t ime function, s-7 In that technique, the convolution 
operation in Equation (1) is represented in the fre- 
quency domain by Fourier transformation as a mul- 
tiplication. 

/~ = B? (9) 

The deconvolution simply involves dividing by the 
beam function (filter) and taking the inverse Fourier 
transform of the result. 

T(x,y) = ~-1{/~/~} (10) 

The authors report two specific difficulties with ob- 
taining this solution. First, the integration in Equa- 
tion (10) is unstable and has particular difficulties 
where the Fourier transform of the beam removal 
function approaches zero. For example, consider 
the one-dimension cont inuous case, where the 
beam removal function is a Gaussian function, B(x) 
= exp[-x2] ,  the transform is B(k) = exp[-k2/4],  
and so the Fourier integral represented by Equation 
(10) is divergent because the negative power be- 
comes positive in dividing by B(k). 

1 f=e_ikx ek2/4 I~(k) dk T(x) = (11) 

This is resolved using a thresholded inverse filter. 
Another problem in the computation arises from 
the discretization. The computations are performed 
using discrete Fourier transforms, which demand 
that the inputs be periodic on finite x - y  arrays with 
the same dimensions. Although the metrology pro- 
vides a rectangular array of surface heights, the 
optical component itself does not necessarily fill 
that array. A point in the array outside the work- 
piece must be filled with some value (often zero). 
The method still accounts for those areas in the 
computation and will provide a solution partially 
directed toward figuring areas that are nonexistent. 
The problem is addressed by using a band limited 
surface extrapolation (BLSE) process to construct 
data in the missing areas. BLSE is a method for 
recovering information from partial or incomplete 
data. 

In another implementation, the Kodak IFS uses 
an iterative solution. 4'12 The iterative method for 
finding a solution to the dwell function should not 
be confused with the idea of iterating the entire 
ion-figuring process to make further corrections. A 
first guess for the dwell time function is made (pos- 
sibly equal to the rescaled desired removal func- 
tion) and used for computing the convolution. The 
result is used to make corrections for a new solu- 
tion. The computation is then iterated several t imes 
until the predicted error is sufficiently small. A sim- 
plified iterative equation is shown here where k 
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represents a relaxation factor (similar to the feed- 
back process gain in a control loop). 

Tn+ 1 = T n + k(R - B * T n) (12) 

In this system, the computat ions are performed us- 
ing x-y arrays, and the machining process involves 
rastering the beam over strips. Velocity values 
must be interpolated from the resulting x-y grid. In 
the machining of the hexagonal Keck segment an 
8th order (45-term) Zernike polynomial fit was used 
to the original surface data. 3 This allows the com- 
putations at any discretization but assumes that the 
fit sufficiently characterizes the surface. The fit also 
fills in areas where the optical component does not 
exist. Iterative methods are not always stable and 
do not always converge to a unique answer. 12 

At Oak Ridge National Labs, a matrix algebraic 
approach is used to solve for the dwell function 
map array. 1° The method requires that an inverse 
matrix to a beam function map be computed. The 
problem is the matrix for the beam function is 
sparse and highly singular. Single valued decom- 
position (SVD) methods are used to construct the 
solution. Most traditional deconvolution methods 
used in the ion-machining process utilize the dis- 
cretization of the metrology in all computations. An 
x-y grid dwell t ime map is provided from the me- 
trology (typically interferometry) and must be fol- 
lowed. Additionally, in these techniques, it is diffi- 
cult to account for, or allow, figuring effects outside 
the computat ion/metrology grid system. The fol- 
lowing solution performs an approximation before 
the computation of the dwell function. In practice, 
all deconvolution methods and variations do not 
necessarily provide the same answers. Different 
answers may even be encountered for different 
computat ional parameters or numerical accura- 
cies. 

Series solution method 

The algorithm used for the PIMS is based on a se- 
ries solut ion technique. The process of getting 
from a series expansion for the known removal 
function to a series expansion for the unknown 
dwell function is shown first. The methods for com- 
puting the necessary conversion coefficients are 
also shown. In the fol lowing section, the opera- 
tional steps are outlined. 

The solution to convolution Equation (1) can be 
expressed in terms of derivatives of the known 
function and inverse moments of the filter. 13'14 

3C 3C 

T(x,y) = ~ ~6pq ~7 pq R(x,y) (13) 
p = 0  q = 0  

The derivative operator is defined as ~Tpq = apxoqq 
The weighted statistical moments of the beam 
function are used to calculate the inversion coeffi- 
cients. The beam function must have finite too- 

ments. The weighted moments of the beam func- 
tion (the filter) are defined as follows. 

( - 1 )Pq 
- f dxd  (14  O(pq 

The inversion coefficients are determined by in- 
verse series algebra (Bochner algebra). 15 

1300 = 1/o(00 
i j 

13;; = -6oo ~ ~ 13(; plU-ql epq i,j # 0 (15) 
p = l  q = l  

The desired removal function is actually only 
known at a number of arbitrary points located any- 
where within the space, and it represents the shape 
of the workpiece in the x-y plane. An area where 
the piece does not exist is not relevant to the com- 
putation of the dwell function but can be relevant in 
the use of the dwell function. A function can be fit 
(more specifically a series expansion) to the known 
data points without regard to the discontinuities or 
unknown areas. An assumption is made that the 
expansion sufficiently represents the data. The re- 
moval function R(x,y) is represented here as a lin- 
ear combination of general k x k basis functions 
4);m(x,y). The parameters or expansion coefficients 
aim are determined by standard linear least squares 
fitting. 16 

k k 

R(x,y) = ~ ~ a,md),m(x,y) (16) 
/ =0  m = 0  

The removal function in Equation (16) is defined 
over all space and is substituted into the solution 
for T(x,y) of Equation (13). Because the expansion 
coefficients are independent of the location, they 
are brought outside the derivative operator. 

~ k k 

T(x, y ) :  ~ ~ ~ ~ ~pq a;rn ~7Pq~b;rn(X, y) 
p=0 q=0 ;=0 m=0 (17) 

The basis functions can represent any expansion, 
but are specif ical ly defined here as separable 
weighted polynomials in x and y. 

X i 
4);j(x,y) =- 4~;(x)4)i(Y) 4);(x) - if. (18) 

These basis functions are chosen because they 
have the property that the nth derivative of the ith 
basis function is the (i - n)th basis function, until 
the zero'th order (i.e., all negative order basis func- 
tions are zero) 

~Tn ~)i(X) = (~i_n(X) (19) 

This allows the substitution for the derivative op- 
erator in Equation (17), and the infinite series auto- 
matically truncates at k. 
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k k k k 

m(x,y) = ~ ~ ~ ~ ~pqalm (h,l-p,(m-q)(X,Y) 
~=0 q=0/=o m=o (20) 

By substituting i = / - p and j = m - q, an ex- 
pression for T(x,y), the dwell function, is found with 
the identical form as the expansion for R(x,y), 

k k 

T(x,y) = ~ ~ bij (hii(x,y) (21) 
i=0 i-0 

The coefficients of the dwell function (b,7) are de- 
fined by the fol lowing. 

k k 
b/j = ~ ~ a/m 13(, /)(n~ /) (22) 

I=i rn=j 

This method provides a very efficient and exact 
solution of the expansion of R(x,y) for the convo- 
lution Equation (1). The only assumption is that the 
original removal surface is polynomic in nature and 
is sufficiently represented by the expansion of or- 
der k × k. There is no special consideration for the 
geometry of the workpiece in the x-y  plane. The 
solution is represented by a function that provides 
values over the entire space for control l ing the 
beam. The only computationally intensive opera- 
tion is the fitting of the expansion in Equation (16). 
The higher the order of the expansion k, the more 
accurate the solution becomes, but the longer the 
computations take. The fitting process may also get 
unstable for very high-order polynomials because 
the linear equations become close to singular. The 
accuracy of the original fit provides a measure of 
how well the process can be expected to perform 
and can easily be checked prior to machining. Be- 
cause of errors in the actual machining process and 
the limitations of the metrology data, there will be 
a saturation limit where increasing the order of the 
expansion will no longer improve machining accu- 
racy. In the final analysis of the fol lowing section, it 
is demonstrated that expansions of moderate order 
containing only 15 terms is sufficient for practical 
machining operations. For the PIMS process, the 
expansion order will be chosen to achieve a spec- 
ified accuracy. 

The solution and algorithm are applicable to 
solving many problems that can be represented by 
the convolution equation, including computer con- 
trolled polishing. 

Step-by-step procedure 

This section describes the operational algorithm 
for using the derivative-series solution. This has 
been implemented in C+ + and integrated into the 
PIMS control program. The Analysis section de- 
scribes some of the initial testing and verifying 
done. A map of surface heights on the optical corn- 
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ponent is the primary input, together with a target 
figure contour. The program then provides a dwell 
function for control l ing the rastering of the ion 
beam. The procedure used in the process is out- 
lined below. 

1. Calculate inversion coefficients: Prior to ma- 
chining, the moments of the beam removal 
function are determined. The inverse coeffi- 
cients are computed from the moments, as 
outlined in the series solution section. The 
moments can be determined directly from 
data or analytically from a functional form of 
the beam. Any function with finite moments 
can be used for the beam function. 

The PIMS assumes a Gaussian beam func- 
tion B(x,y) = F Exp [ - ( x  2 + y2) / j ] .  The in- 
verse coefficients are given as fol lows: 

(-1)p+q ,'2 (~o/2)p~ q 

~Pq = F'rrJ (p/2)!(q/2)! 
p,q even (23) 

For even functions, only the even moments 
exists; therefore, only even inverse moments 
exist. Thus, in the Gaussian function used for 
the ion beam profile, the odd inverse coeffi- 
cients are zero. The parameter r is the peak 
material removal rate, and the parameter ~o 
represents the width of the beam function. 
These two parameters completely character- 
ize the Gaussian beam function. 

2. Load surface map: An interferonmetric map of 
the optical component 's surface height data is 
loaded in an array, sample map. Included in 
the surface height data is a coordinate system 
for the x-y  location and information on which 
points represent real data and which points 
are invalid. 

Sij at x~ Yi (24) 

In the PIMS, a ZYGO Mark IV interferometer is 
used to measure the surface heights. The rel- 
ative location of the data points is determined 
by dividing the known diameter of a circular 
workpiece by the number of points across the 
surface map 

3. Subtract desired contour map: The material to 
be removed, the removal map (Rii), is equal to 
the surface map minus a desired surface con- 
tour map C(x,y). This can be considered an 
error map of surface features. 

R/j = Sij - C(xj, yj) (25) 

4. Fit removal function: The removal map is now 
fit to a series expansion. The order of the fit 
must be chosen at this step. The problem of 
finding the fitting coefficients is posed as a 
l i nea r  p r o b l e m  by s e t t i n g  up a one -  
dimensional array equal to the number of ac- 
tual data points in the x-y  removal map and 
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fol lowing standard linear least-squares rou- 
tines. 

. 

k k 

R(x,y) = ~ ~ aim 6/rn(X,Y) (26) 
/=0 m=0  

The accuracy of the expansion is checked to 
ensure that it sufficiently represents the differ- 
ence between the surface map and the desired 
contour map. This accuracy is determined by 
the root-mean-square (rms) difference be- 
tween the removal map and the computed re- 
moval function expansion ~1, defined below as 
the goodness-of-fit measure. 

0 = ~ ~i (R~ - R(xi, yi))2/N (27) 

The summation is performed only over exist- 
ing data points where N is the total number of 
actual data points. The figuring process will 
not make the resulting surface any closer to 
the desired contour than the accuracy of this 
fit. We use modified routines taken directly 
from a standard numerical text. TM 

Deconvolve: The deconvolution is performed 
by using the solution for the coefficients of the 
dwell function as calculated from the coeffi- 
cients for the removal function and the inverse 
moments of the beam function. 

k k 

bij = ~ ~ a/m 13(,-/)ira j) (28) 
I= i  m=j 

After the deconvolution is performed, the con- 
stant term in the expansion is adjusted to en- 
sure that the dwell function is positive within 
the workarea. This is done by checking grid 
points within the workarea and subtracting 
the lowest value from the constant term. This 
is also done to provide the solution with the 
lowest total dwell time. 

The algorithm results in the coefficients for the dwell 
function that are used to control the motion of the 
ion beam during the actual machining process. 

k k 

T(x,y) = ~ ~ bii ~bii(x,Y) (29) 
i=0  j = 0  

The workarea is now broken into strips with a char- 
acteristic width. For each strip, the ion beam is 
moved along the center of the strip at velocities 
determined as in the Problem Formulation section. 
At the end of the current strip, the beam is reposi- 
tioned for the subsequent strip. After the operation 
is complete, the resulting surface figure of the op- 
tical component is measured again. The quality of 
the optical component 's contour is determined as 

the rms deviation between the surface and the de- 
sired contour. 

~ = ~ ~j (S,~ - C(xi, yi))2/N (30) 

Again, the sum is only over datapoints that exist, 
and N is the total number of points. The initial qual- 
ity is the deviation from the original surface (~ and 
the final quality is the deviation from the postma- 
chining surface (# The final rms difference between 
the resulting final map surface and the desired con- 
tour map will be no better than the goodness-of-fit 
measure (the rms difference between the removal 
function fit to the removal map) (f >/~. The differ- 
ence between the initial and final rms surface fig- 
ure is the improvement achieved by the figuring 
process. 

Analysis 
Processing models 

Models of the ion-machining process were devel- 
oped to identify critical parameters, to establish 
theoretical limits of the operation, and to evaluate 
the deconvolution algorithms prior to machining 
experiments. Simulations modeling the operation 
of rastering the beam across the workpiece are rep- 
resented by a discrete convolution. The simula- 
tions utilize data obtained from an actual optical 
sample 60-ram in diameter, as measured on a 
ZYGO Mark IV interferometer. The process mod- 
eled imparting both an ideal flat and a spherical 
contour on the sample workpiece. The simulations 
were not designed to predict the system exactly but 
to provide relative information. The simulations in- 
dicated those parameters to which the process is 
sensitive, not the precise reaction to the particular 
parameters. 

The main objective of this analysis is to evalu- 
ate the necessary or optimal values for the process 
variables before machining is performed. During 
the deconvolution process, the order of the func- 
tional fit to the removal map k is the primary oper- 
ator supplied variable. The effects of this order on 
predicted performance are shown. Also, the sensi- 
tivity to particular types of error are explored to 
provide information on the necessary positioning 
accuracy of the optical component. An understand- 
ing is achieved on how fluctuations or inaccuracy 
in beam function contribute to errors in the pro- 
cess. Another important objective is to understand 
the theoretical limits of the ion machining system 
given the modeled errors. 

The simulations compute the convolution op- 
eration as a discrete convolution where sg, s h rep- 
resent the coordinate systems of the convolution 
model's discretization, and Ar is the separation. 

R(xwi) = ~ ~ B(x i -  Sg, y i - Sh)T(sg, Sh)Ar ~r 
g=0h=0 (31) 
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The metrology dictates the coordinate system of 
the removal funct ion x; and yj. The result ing re- 
moval map is then subtracted from the original sur- 
face data to provide the theoretical postprocessing 
surface map. The accuracy of the f igure of an opti- 
cal component is quanti f ied as the rms difference 
between the surface map and the desired contour 
map (, as defined in the previous section. There- 
fore, the measure of the effectiveness of the pro- 
cess is the difference in the initial and final rms 
deviation. The parameter available when determin- 
ing the solut ion to the dwell funct ion is the order of 
the fit k. For initial experiments, the solut ion deter- 
mined has k x k terms in the expansion in Equation 
(16). The fit to the desired removal is an expansion 
of the same order, and the accuracy of the fit is a 
measure of what can be expected during the actual 
processing. The effects of higher-order k on the 
original fit and on the simulated removal is ex- 
plored later. 

The beam funct ion is modeled as a Gaussian 
for the simulat ion and the solution is defined in 
Equation (32) and shown in Figure I. 

B(x,y) = Fe-  ix2 + ~)/J (32) 

For the simulat ions, a beam width of ~0 = 10 mm is 
chosen based on previous beam data for determin- 
ing the solution. This roughly corresponds to the 
expected shape of the 3-cm source in the actual ion 
machining apparatus. Larger sources wil l  not be 
used, but it may be possible to narrow the beam by 
placing a small aperture in the path of the acceler- 
ated ions. This would reduce the width of the beam 
and the overall beam shape, but the peak removal 
should remain unchanged. The solut ion assumes a 
constant peak removal of F = 100 nm/min. The 
volumetr ic removal rate is a funct ion of the two 
parameters. 

"~ = l "  11" 0.) 2 (33) 

This results in a volumetr ic  removal rate ~ = 0.0314 
mm3/min for the simulat ions. The data array used 
is 66 x 66 for a total of 4,356 locations but there are 
data at only 3,384 locations because of the circular 
nature of the component  and drop-out spots from 
the interferometry. The separation between each 
data point is approximately 0.9 mm. The simula- 
t ions involve the f igur ing of the optic to an ideal flat 
and to a sphere of 400-m radius. The current figure 
deviates 234 nm rms from flat, and the deviation 
from the sphere is 114 nm rms. The discretization 
of the convolut ion zXR is chosen at 1.0 mm. 

Error models 

The f iguring system is subject to inherent process- 
ing errors; their respective sensit ivit ies need to be 
determined. All the errors modeled here are real- 
ized through the beam function, but they can rep- 
resent such other errors in the system as inaccurate 
posi t ioning of the workpiece on the translat ion 
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stage. The simulated errors are introduced as vari- 
ations in the beam function parameters and the rel- 
ative posit ioning of the beam. Systematic offset er- 
rors and normal ly distr ibuted random errors in the 
parameters are instituted by adjusting the variables 
in the beam function of Equation (32). 

~o -- ~o o + COof f + ~ N  

F = F o + Foff + ~ r N  

x = x + Xo~ f + ~xN (34) 

N is a normal ly distr ibuted random number with 
zero mean and unit variance. This model incorpo- 
rates six error parameters. The coordinate offset 
Xof f represents posit ioning error, (for example an 
error in locating the component on the translation 
stage). The coordinate f luctuations er x represents 
errors in the motion of the beam. The offset errors 
in the beam function parameters For f and ~off rep- 
resent the inaccuracy in the experimental determi- 
nation of these parameters. Fluctuations of these 
parameters ~.  or ~ could be caused by power fluc- 
tuation and random deviations from the ideal beam 
shape. Each of the six error parameters are evalu- 
ated separately, whereas the others are set to zero. 

In this section, we explore the sensit ivi ty of the 
model to these error parameters. All s imulat ions 
use an expansion of order k = 3. The simulat ions 
are first run with no errors, to indicate the baseline 
results shown in Table 2. In both cases, the f igur ing 
to a flat and a spherical contour, the sample is fig- 
ured to 47 nm rms deviation from the desired fig- 
ure. This is the theoretical l imit of the process di- 
rectly related to the accuracy of the funct ion fit 
chosen for the desired removal. If the expansion 
order is increased, the theoretical l imit  could be 
reduced. Therefore, for the ideal case, the final fig- 
ure error is equal to the error of the original fit to 
the removal map. The improvement is the amount 
the figure error was reduced. On all the plots, the 
initial f igure error is shown for both the flat and the 
spherical case. 

Figure 2A shows the result ing final rms f igure 
error versus the modeled beam width ~. The offset 
error in the beam width was varied from - 5  to 5 
mm. The solution was performed for a beam width 
~00 = 10 mm with zero offset. Therefore, the ideal 
f igures (~ = 47 nm rms) are at o~ = 10 mm. The plot 
shows that the workpiece f igure is not improved if 
the actual beam width is greater then 14 mm. If the 

Table 2 Results of s imulat ions with no errors 

Test Initial Fit ~ Final Improvement 
case ~i ~,f (~,'-~) 

Flat 234nm 47 nm 47 nm 187 nm 
Sphere 114nm 4 7 n m  4 7 n m  6 7 n m  
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actual beam width is less than 10 ram, the improve- 
ment decreases fair ly l inearly to zero improvement, 
at zero beam width. Figure 2B shows the resulting 
final rms f igure error versus the variance of the 
random beam width error ~ .  Normal ly distributed, 
random errors in the beam width below 3 mm 
show little effects, but for values above 3 mm, the 
process no longer produces coherent removal, and 
no improvement in f igure is obtained. 

The result ing final rms f igure error versus the 
modeled beam peak removal rate F is depicted in 
Figure 3A. In this plot, offset errors in the rate are 
considered ranging from - 100 to 100 nm/min. The 
best result, m in imum figure error, occurs at zero 
offset where r = 100 nm/min, which was used in 
the calculation of the solution, The plot shows a 
symmetr ic  reduct ion of performance as the re- 
moval rate is varied. Figure 3B shows the effects of 
random errors in beam peak removal ~r. As appar- 
ent in the plot, these normal ly distr ibuted fluctua- 
t ions do not signif icant ly affect the process. 

Figure 4,4 shows the result ing rms figure error 
versus the posit ion offset (accuracy of locating the 
part wi th respect to the ion beam). The plot shows 
the reduction in performance as the location accu- 
racy is decreased. From these data, the process 
does not seem to be signif icantly affected if the 
beam is posit ion wi th in 10 mm of the expected rel- 
ative location. Figure 4B shows the resulting rms 
figure error versus a normal ly distr ibuted random 
posit ion error. The random errors seem to cause a 
more detrimental effect at first. However, it should 
be noted that the random errors inherent in the 
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system are of a lower magnitude than the static 
posit ioning errors of Figure 4,4. The random errors 
that would occur wi l l  be related to beam variances 
and translat ional stage movements and can be 
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maintained well below the 1-mm point where they 
begin to cause significant figure errors. The ion 
beam is spatially stable during the process, and the 
stage accuracy is well below the l-ram threshold. 

The simulations of Figures 2, 3, and 4 show 
two cases: a flat and a sphere. It is useful to gen- 
eralize the results for Figures 2 and 4, where the 
ordinate of the plots (resulting figure error) is nor- 
malized. This normalization gives a resulting per- 
centage of the difference between the initial figure 
error and the ideal surface (which is the error of the 
original fit to the removal map) and is defined be- 
low as a performance factor. 

• / -  ~ f  - - -  (35) 

The abscissa is normalized in a similar manner by 
taking a ratio of the given dimension with respect 
to the beam width. The plots are used to determine 
the relationship of the parameters to the potential 
process results for a generic optical contour. The 
generalized information from the normalized plots 
is applicable to any target scale and expected beam 
profile. The results of this normalization are shown 
in Figures 5 and 6. In these plots, the two cases 
show very similar behavior. 

Fitting order k 

The effectiveness of the series expansion for the 
removal function is critical to the performance of 
the machining system. The solution provided by 
the algorithm assumes that the series expansion 
represents the surface contours sufficiently. The re- 
sulting function for the dwell function is an exact 
solution. The resulting figure will be no more ac- 
curate then the fit of this solution to the removal 
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Figure 7 The goodness-o f -measure  ~1 compared 
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sion methods. 

map. This fitting of the series expansion to the re- 
moval is the only computat ional ly diff icult and 
t ime-consuming step. It is important to determine 
the most efficient process for fitting the expansion, 
including the minimum number of terms necessary 
to represent a surface accurately. 

Previously, the fitting order k in the series ex- 
pansion was the highest individual order in the or- 
thogonal spatial dimensions. An expansion of or- 
der k has a k x k square array of coefficients with k 2 
terms. This is denoted as a square expansion. An- 
other way of interpreting k is as the highest total 
order in x and y. The technique is a tr iangular ex- 
pansion of order k. The expansion in Equation (16) 
would then become as follows. 

k k - 1  

R(x,y) = ~ ~ a,rn (b,rnlX, y) 
/=0 m=0 (36) 

This method has a triangular array of coefficients 
and the number  of terms in the expansion is 
equal to 
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k 

n = l  

Figure 7 shows the results of fitting the two expan- 
sion techniques to the removal map compared to 
the actual number of terms (data points are taken 
for k = 1, 2 . . . .  ). As apparent in the plot, the trian- 
gular  expansion converges much faster. This 
means that fewer terms are necessary; the compu- 
tations are faster and hence are more stable. In all 
future algorithms, the tr iangular expansion is used. 

It is desirable to keep the expansion order k as 
low as possible for efficiency. It is meaningless to 
fit the surface to higher accuracy than that provided 
by the metrology. The higher the number of terms, 
the longer the computation takes and the less sta- 
ble a fitting routine becomes. Additionally, solu- 
t ions to higher-order expansions include high- 
frequency behavior as the expansion corrects for 
random fluctuations between datapoints. This be- 
havior does not represent most actual desired op- 
tical surfaces, and the broad-team ion-figuring pro- 
cess is not capable of generating high-frequency 
shapes. 

Figure 8 shows the goodness-of-fit compared 
to the total number of terms in the series expansion 
up to 100 terms. The plot shows rapid convergence 
to 10 nm rms at 15 terms and then much slower 
convergence after 15 terms. The slight discontinu- 
ity in the plot around the 10-term expansion is re- 
lated to the spatial characteristics of the measured 
surface profile and is not a function of the tech- 
nique. Theoretically, the fit will converge to zero at 
some higher number of terms (in practice this 
would be truncated by the precision of the num- 
bers used in the computer code.) In this example, 
the surface map was taken from a ZYGO Mark IV 
interferometer with a physical limit on the mea- 
surement accuracy. The noise f loor expected from 
this metrology system is ;k/50 or 12 nm (;~ = 632.8 
nm). The bend in Figure 8 is, therefore, corrobo- 
rated by the accuracy of the metrology system. For 
this surface, 15 terms can sufficiently characterize 
the figure. 
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Figure 8 The goodness-of-measure ~l as a func- 
tion of the total number of terms in the series ex- 
pansion. 

In these operations, the workpiece is measured 
and then fit by the triangular expansion. If there is 
more than 12 nm rms (the accuracy of the metrol- 
ogy) difference between the surface map and the 
polynomial expansion (T I ~> 12 nm), the fit is re- 
peated with a higher-order expansion. In actual op- 
eration, the order is repeatedly increased until no 
significant improvement in the fit is demonstrated. 
It is expected that the number of terms needed will 
be on the order of 15 (k = 5). Computations for this 
number of terms are very fast and efficient. Also, 
no difficulties have been experienced regarding the 
stability of the fitting algorithms. 

Conclusion 

The new precision ion machining system research 
facility at NASA's Marshall Space Flight Center is 
focused on the figuring of small (=10-cm diameter) 
optical mirrors. The surface profile measurements 
are taken using a ZYGO Mark IV interferometer. 
The surface roughness measurements are taken 
using a WYKO three-dimensional optical surface 
profilometer. The ion-machining apparatus itself is 
constructed around a surplus sputtering vacuum 
chamber. Fitted inside the chamber is a 3-cm, 
Kaufman filament-type ion source driven by a pro- 
grammable power supply. A computer-controlled 
translation stage is fitted to the f loor of the cham- 
ber. The optical components are attached to a spe- 
cial holder designed to facilitate transfer of the 
component between the metrology equipment and 
the machining apparatus. The holder is placed on 
the translation stage that provides translations and 
rotations of the optic. The stage has 100-mm range 
and 360 ° rotation at speeds up to 15 RPM. The mo- 
tion of the system as well as the ion source power 
supply will be controlled by a 80386-based per- 
sonal computer. In this setup, the workpiece is 
moved, and the ion beam source is held in a fixed 
position. 

The process of figuring an optical component 
involves the fol lowing steps. The component's sur- 
face profile is measured on the interferometer, and 
the surface height data map is transferred to the 
controll ing PC. The surface data are loaded into the 
targeting program, and the desired contour and the 
order of the functional expansions are chosen. The 
targeting program reports the initial rms deviation 
from the desired profile i;; and indicates the accu- 
racy of the function fit to the desired removal ~q. If 
the fit is sufficiently accurate ~1 <~ 12 nm, the pro- 
gram computes the solution for the dwell function. 
The component is positioned in the chamber and 
brought under vacuum. An appropriate machining 
path is chosen for the process. The targeting pro- 
gram activates the ion beam and rasters the com- 
ponent fol lowing the paths at velocities determined 
by the dwell function. When the process is com- 
plete, the optical component is removed and eval- 
uated for both surface figure and resulting surface 
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finish. The final f igure data are transferred to the 
controll ing PC, and the program reports the final 
rms deviation from the desired contour ~p 

The data obtained from the simulation work 
provide operat ional  guidel ines for the ion-ma- 
chining process. These data will be utilized in the 
design of support  hardware and processing proce- 
dures for future experiments in the PIMS facility. 
Several optical component  samples were acquired 
for the experimental testing. These include four 
chemically vapor deposited silicon carbide (CVD 
SiC) samples and ten fused silica samples. All com- 
ponents have been polished flat and are 80-mm in 
diameter. The fused silica represent a common ma- 
terial for optical components and will be used to 
baseline the process. For precision space-based 
components, CVD SiC could replace the more com- 
mon glasses because of its inherent toughness, 
stiffness, and large cr i t ica l -depth-of -cut  with regard 
to damage-free machining. Dissimilar to glass, CVD 
SiC can be easily ground in an entirely ductile re- 
gime. 17'18 Moreover, it has been demonstrated that 
CVD SiC can be ground with surface finishes of --10 
angstroms wi thout  inducing subsurface damage. 
Previous research has shown that subsequent ion 
machining does not signif icantly degrade the sur- 
face roughness of these duct i le ground speci- 
mens. 1~ These future experiments wil l  be used to 
validate the ion-machining technique by applying 
the algori thms developed in this paper. 
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